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ShaneAO	
  RTC	
  -­‐	
  	
  	
  

The ShaneAO AO control system is implemented in a hierarchy of support 
software packages:	


	


•  Lowest level – fast computations – “bare minimum” data/parameter-driven 

program	


•  Mid level – data and parameter maintenance (diagnostics, calibration, 

parameter loading, operations modes)	


•  GUI level – user interface	


•  Support routines – generate parameters, do simulations and validations	


•  Code maintenance – cvs repository, Knowledge Tree documentation, on-

line documentation	





Requirements	
  Defini9on	
  Documents	
  
ShaneAO	
  document	
  server	
  (KnowledgeTree)	
  links	
  

•  RTC	
  SoHware	
  Defini9on	
  Document	
  011bu	
  
•  RTC	
  Timing	
  Requirements	
  011bj	
  
•  RTC	
  Data	
  Requirements	
  011bk	
  
	
  



RTC	
  Hardware	
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ShaneAO	
  allows	
  for	
  3	
  WFS	
  architectures:	
  
8x,	
  16x,	
  30x	
  

	
  	
   	
  	
  

	
  	
   	
  	
  



Woofer-­‐Tweeter	
  

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, 	


and Daren Dillon, “Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and 
experimental results,” SPIE Photonics West, 2013.	
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Modules…	
  

•  RTC2 – the rtc engine, written in C, dynamically linked to RTC!
•  RTC – the supervisor, written in Python	


•  File System	


•  WFS – definition of mode sets, creation of reconstructor matrix	


•  IDL scripts - paramgen.pro!
•  GUI	





Parameter	
  Prepara9on	
  and	
  Handling	
  

•  “Parameters” (matrix, offsets, and 
limits,…) are prepared outside the 
RTC.	



•  All calibration operations (flat, 
dark, refcent…) are done outside 
the RTC	



•  Parameters stored in FITS files	


•  Parameters loaded through the 

Python-C extension	


•  Python-C extension “peeks” at 

the RTC data via pointers, and 
displays diagnostics as you like	



RTC	
  python	
  
module	
  

(supervisor)	
  

RTC2	
  c-­‐
extension	
  
module	
  
(engine)	
  

FITS	
  files	
  

rtc2.load	
  

rtc2.peek	
  



Preparing	
  the	
  Reconstructor	
  



A	
  Mathema9cal	
  Framework	
  for	
  the	
  
Reconstructor	
  	
  

•  Assume the wavefront is “fittable” by a set of modes	


	



•  {ci,bi(x)} is any vector space. These “internal” modes (basis functions 
bi(x)) don’t have to be orthonormal, can mix pieces of mode sets (Zernike, 
Fourier, DM modes, etc.). Solution is restricted to Hilbert subspace 
spanned by the basis functions	



•  The Shack-Hartmann wavefront sensor responds to the wavefront as	



•  And thus is related to the mode coefficients as	



•  Finally, we assume that the deformable mirrors can produce the mode set, 
with some fitting error, where ri(x) are actuator influence functions	



•  The actuator command vector is related to the mode coefficients by	
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Internal	
  Mode	
  Space	
  Formula9on	
  is	
  General	
  

•  Fourier reconstructor is in this formulation:	


–  	

 Fourier-equivalent matrix form:	


–  	

 Fourier “reconstructor” is (mathematically)	



	

subsumed in the internal mode space concept	


–  	

 Modal weights are also subsumed	


–  	

 -> An alternative implementation is needed to get at signals in Fourier 

space	


•  Poke-matrix reconstructor is in this formulation. 	



–  The basis set can be the actuator influence functions (c=a; A=I, and H = 
the familiar “poke” matrix). Not recommended for ShaneAO 8x and 
16x modes.	



•  Zernike mode reconstructors are in this formulation	
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This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.
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Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that
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where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation
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Genera9ng	
  the	
  Reconstruc9on	
  Matrix	
  

•  The reconstructor strives to find the mode coefficients given the sensor 
readings, then set the actuators accordingly	



•  Regularized pseudo-inverse of H (Waffle Suppression, Minimum Variance 
Estimation)	



•  Only R is used by the rtc (#3 on viewgraph 19)	


•  Matrix sub-blocks are used to incorporate woofer mode de-projection and 

filtering…	
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ShaneAO	
  DMs	
  Mode	
  Spaces	
  

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, “Performance assessment of a candidate 
architecture for real-time woofer-tweeter controllers: Simulation and experimental results,” SPIE Photonics West, 2013.	


	





Dealing	
  with	
  the	
  Woofer-­‐Tweeter	
  Pair	
  
Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to
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Woofer	
  and	
  Tweeter	
  mode	
  spaces	
  
	
  in	
  matrix	
  form	
  



Least-­‐squares	
  fits,	
  projec9ons,	
  and	
  cross	
  
correla9ons	
  



Projec9on	
  to	
  woofer	
  modes,	
  followed	
  by	
  de-­‐
projec9on	
  back	
  to	
  tweeter,	
  is	
  kosher	
  

…so	
  long	
  as	
  the	
  woofer	
  modes	
  are	
  in	
  the	
  tweeter’s	
  Hilbert	
  space	
  



Woofer-­‐Tweeter	
  controller	
  

LPF	
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Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)
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This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.
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Stability To analyze stability, we need to understand the plant, that is, the system measurements s
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in response to driving the input, a
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. We can say that
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where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
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which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.
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which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.
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The woofer and tweeter respond to linear combinations of their mode sets according to
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If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:
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Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
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The	
  Woofer	
  modes	
  on	
  the	
  Tweeter	
  are	
  Low-­‐Pass	
  
Filtered	
  –	
  so	
  we	
  need	
  a	
  filter	
  expressed	
  in	
  state	
  space	
  

x	
  

1	
   f	



Re z	



Im z	


HL(z)	





The	
  whole	
  woofer-­‐tweeter	
  control	
  law	
  wrijen	
  
in	
  state-­‐space	
  form	
  

Or, in matrix form:	





…and,	
  with	
  more	
  matrix	
  form	
  manipula9on…	
  

This	
  is	
  all	
  there	
  is	
  to	
  it	
  folks!	
  



Stability	
  Analysis	
  
How	
  the	
  WFS	
  responds	
  to	
  DM	
  changes:	
  
	
  

How	
  the	
  Woofer	
  responds	
  slower:	
  
	
  

Stable	
  if	
  all	
  eigenvalues	
  are	
  inside	
  unit	
  circle	
  



Stability	
  can	
  be	
  enforced	
  



For	
  Insight:	
  Let’s	
  Look	
  at	
  the	
  Mode	
  Coefficients	
  

Feedback	
  Dynamics	
  of	
  the	
  mode	
  coefficients	
  



Mode	
  Spaces	
  Decouple…	
  



Mode	
  Spaces	
  Decouple	
  
Into	
  Shared	
  and	
  Tweeter-­‐Only	
  Modes	
  

Shared	
  modes:	
  4-­‐state	
  

Tweeter-­‐only	
  modes:	
  scalar-­‐state	
  



Simula9on	
  Results:	
  
Everything	
  is	
  Stable	
  and	
  Behaves	
  as	
  Expected	
  

Coupled	
  Woofer-­‐Tweeter	
  
Mode	
  with	
  a	
  Step	
  Func9on	
  +	
  
Rapid	
  Sinusoid	
  Disturbance	
  Woofer	
  

Tweeter	
  

Residual	
  



RTC	
  module	
  



RTC	
  processing	
  steps	
  

•  Done in serial by the RTC engine (RTC2 module), written in C-language:	


	


1.  Map pixels to subaps (indirect map)	


2.  Centroid	


3.  Matrix-multiply	


4.  Accumulate/Limit	


5.  Push to DM through indirect map	


	


•  Coding takes advantage of BLAS routines (cblas_dgemv) to optimize/

parallelize linear algebra steps.	


•  Timing tests show no need to overlap operations of multiple frame steps. 

Gets done in under 660 us, even in 30x mode.	



si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT )�1HT

1

si = Wpi; i 2 subaps
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RTC	
  processing	
  code	
  
17	
  lines	
  of	
  code…	
  

…just	
  kidding!	
  This	
  	
  is	
  the	
  simulator	
  in	
  rtc.py.	
  	
  
But	
  even	
  it	
  runs	
  at	
  ~	
  hundred	
  hz!	
  



Documenta9on	
  



Documented	
  Modules…	
  

•  RTC2 – the rtc engine	


•  RTC – the supervisor	


•  File system	


•  WFS – definition of mode sets, 

creation of reconstructor matrix	


•  IDL scripts - paramgen.pro	


•  GUI – (not yet..)	





On-­‐line	
  Docs	
  
(example	
  of	
  HTML	
  Sphinx	
  auto-­‐docs)	
  	
  



RTC	
  System	
  Status	
  

Present Status:	


•  Low, Mid, and Support: These are mostly done in Python and c-

extensions now, but some scripts still in IDL	


•  No work has been done on the GUI	


•  RTC2 has all risks retired. Timing tests passed, up to 30x	


•  Code maintenance and doc systems in place.	


	


Surprises:	


•  All VMMs test passed; exceed 1.5kHz frame rate	


•  No kernel modules – no need for “RT” Linux	


•  The 24 CPU machine is not the fastest we have (!) (i7s doing better 

than Xeons)	


•  BLAS doing 2-3x better than “hand coded.” Surprising trade of || 

processing and pipeline	





“Bare	
  minimum”	
  RTC	
  engine	
  requirement	
  
•  WFS	
  Cam	
  readout	
  

–  1kHz	
  “frame	
  rate”:	
  1	
  ms	
  allocated	
  roughly	
  as	
  follows	
  
•  985	
  us	
  expose	
  
•  15	
  us	
  frame	
  transfer	
  

–  Camera	
  collec9ng	
  photons	
  the	
  majority	
  of	
  9me	
  (98.5%	
  duty	
  cycle)	
  

•  DM	
  output	
  
–  Get	
  this	
  out	
  by	
  the	
  9me	
  average	
  data	
  age	
  =	
  1.5	
  ms	
  

Camera	
  Expose	
  

Time	
  

Camera	
  Expose	
   Camera	
  Expose	
  

Framebuffer	
  
readout	
  

Framebuffer	
  
readout	
  

Process	
  
Data	
  

Process	
  
Data	
  

Out	
  to	
  
DM	
  

Average	
  data	
  age	
  



How	
  to	
  do	
  wind-­‐predic9ve	
  control?	
  

•  30x mode only?	


•  Wind measurement algorithm	


–  Probably implemented in supervisor, or separate thread	



•  not real-time critical	


•  uses telemetry data	



–  Decimate(?) Anti-alias filter(?) the raw data	


•  RT Wind-Blown wavefront predictor	


–  Load new matrices and proceed with VMM?	


	

Or	


–  Code a Fourier version of the engine and “Fourier-shift”	




