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ShaneAO	  RTC	  -‐	  	  	  

The ShaneAO AO control system is implemented in a hierarchy of support 
software packages:	

	

•  Lowest level – fast computations – “bare minimum” data/parameter-driven 

program	

•  Mid level – data and parameter maintenance (diagnostics, calibration, 

parameter loading, operations modes)	

•  GUI level – user interface	

•  Support routines – generate parameters, do simulations and validations	

•  Code maintenance – cvs repository, Knowledge Tree documentation, on-

line documentation	




Requirements	  Defini9on	  Documents	  
ShaneAO	  document	  server	  (KnowledgeTree)	  links	  

•  RTC	  SoHware	  Defini9on	  Document	  011bu	  
•  RTC	  Timing	  Requirements	  011bj	  
•  RTC	  Data	  Requirements	  011bk	  
	  



RTC	  Hardware	  



Hardware/RTC	  data	  flow	  

WFS	  Cam	  

TT	  Cam	  

WFS	  
Processor	  

Woofer	  Mode	  
Projector	  

DM	  Volts	  
Driver	  

Tweeter	  DM	  

Woofer	  DM	  

Reconstructor	  

Tip/Tilt	  
Processor	  

Woofer	  
Driver	  

PC	  

Linux	  Box	  



Detail:	  hardware	  pieces	  in	  the	  data	  
flow	  paths	  
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ShaneAO	  allows	  for	  3	  WFS	  architectures:	  
8x,	  16x,	  30x	  

	  	   	  	  

	  	   	  	  



Woofer-‐Tweeter	  

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, 	

and Daren Dillon, “Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and 
experimental results,” SPIE Photonics West, 2013.	

	




RTC	  SoHware	  



Modules…	  

•  RTC2 – the rtc engine, written in C, dynamically linked to RTC!
•  RTC – the supervisor, written in Python	

•  File System	

•  WFS – definition of mode sets, creation of reconstructor matrix	

•  IDL scripts - paramgen.pro!
•  GUI	




Parameter	  Prepara9on	  and	  Handling	  

•  “Parameters” (matrix, offsets, and 
limits,…) are prepared outside the 
RTC.	


•  All calibration operations (flat, 
dark, refcent…) are done outside 
the RTC	


•  Parameters stored in FITS files	

•  Parameters loaded through the 

Python-C extension	

•  Python-C extension “peeks” at 

the RTC data via pointers, and 
displays diagnostics as you like	


RTC	  python	  
module	  

(supervisor)	  

RTC2	  c-‐
extension	  
module	  
(engine)	  

FITS	  files	  

rtc2.load	  

rtc2.peek	  



Preparing	  the	  Reconstructor	  



A	  Mathema9cal	  Framework	  for	  the	  
Reconstructor	  	  

•  Assume the wavefront is “fittable” by a set of modes	

	


•  {ci,bi(x)} is any vector space. These “internal” modes (basis functions 
bi(x)) don’t have to be orthonormal, can mix pieces of mode sets (Zernike, 
Fourier, DM modes, etc.). Solution is restricted to Hilbert subspace 
spanned by the basis functions	


•  The Shack-Hartmann wavefront sensor responds to the wavefront as	


•  And thus is related to the mode coefficients as	


•  Finally, we assume that the deformable mirrors can produce the mode set, 
with some fitting error, where ri(x) are actuator influence functions	


•  The actuator command vector is related to the mode coefficients by	
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Internal	  Mode	  Space	  Formula9on	  is	  General	  

•  Fourier reconstructor is in this formulation:	

–  	
 Fourier-equivalent matrix form:	

–  	
 Fourier “reconstructor” is (mathematically)	


	
subsumed in the internal mode space concept	

–  	
 Modal weights are also subsumed	

–  	
 -> An alternative implementation is needed to get at signals in Fourier 

space	

•  Poke-matrix reconstructor is in this formulation. 	


–  The basis set can be the actuator influence functions (c=a; A=I, and H = 
the familiar “poke” matrix). Not recommended for ShaneAO 8x and 
16x modes.	


•  Zernike mode reconstructors are in this formulation	
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This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.
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Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation
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Genera9ng	  the	  Reconstruc9on	  Matrix	  

•  The reconstructor strives to find the mode coefficients given the sensor 
readings, then set the actuators accordingly	


•  Regularized pseudo-inverse of H (Waffle Suppression, Minimum Variance 
Estimation)	


•  Only R is used by the rtc (#3 on viewgraph 19)	

•  Matrix sub-blocks are used to incorporate woofer mode de-projection and 

filtering…	
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ShaneAO	  DMs	  Mode	  Spaces	  

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, “Performance assessment of a candidate 
architecture for real-time woofer-tweeter controllers: Simulation and experimental results,” SPIE Photonics West, 2013.	

	




Dealing	  with	  the	  Woofer-‐Tweeter	  Pair	  
Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to
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Woofer	  and	  Tweeter	  mode	  spaces	  
	  in	  matrix	  form	  



Least-‐squares	  fits,	  projec9ons,	  and	  cross	  
correla9ons	  



Projec9on	  to	  woofer	  modes,	  followed	  by	  de-‐
projec9on	  back	  to	  tweeter,	  is	  kosher	  

…so	  long	  as	  the	  woofer	  modes	  are	  in	  the	  tweeter’s	  Hilbert	  space	  



Woofer-‐Tweeter	  controller	  
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Woofer and Tweeter Mode Spaces
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We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

which can be written in the form

2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or

a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.
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which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.
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which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.
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The woofer and tweeter respond to linear combinations of their mode sets according to
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The	  Woofer	  modes	  on	  the	  Tweeter	  are	  Low-‐Pass	  
Filtered	  –	  so	  we	  need	  a	  filter	  expressed	  in	  state	  space	  

x	  

1	   f	


Re z	


Im z	

HL(z)	




The	  whole	  woofer-‐tweeter	  control	  law	  wrijen	  
in	  state-‐space	  form	  

Or, in matrix form:	




…and,	  with	  more	  matrix	  form	  manipula9on…	  

This	  is	  all	  there	  is	  to	  it	  folks!	  



Stability	  Analysis	  
How	  the	  WFS	  responds	  to	  DM	  changes:	  
	  

How	  the	  Woofer	  responds	  slower:	  
	  

Stable	  if	  all	  eigenvalues	  are	  inside	  unit	  circle	  



Stability	  can	  be	  enforced	  



For	  Insight:	  Let’s	  Look	  at	  the	  Mode	  Coefficients	  

Feedback	  Dynamics	  of	  the	  mode	  coefficients	  



Mode	  Spaces	  Decouple…	  



Mode	  Spaces	  Decouple	  
Into	  Shared	  and	  Tweeter-‐Only	  Modes	  

Shared	  modes:	  4-‐state	  

Tweeter-‐only	  modes:	  scalar-‐state	  



Simula9on	  Results:	  
Everything	  is	  Stable	  and	  Behaves	  as	  Expected	  

Coupled	  Woofer-‐Tweeter	  
Mode	  with	  a	  Step	  Func9on	  +	  
Rapid	  Sinusoid	  Disturbance	  Woofer	  

Tweeter	  

Residual	  



RTC	  module	  



RTC	  processing	  steps	  

•  Done in serial by the RTC engine (RTC2 module), written in C-language:	

	

1.  Map pixels to subaps (indirect map)	

2.  Centroid	

3.  Matrix-multiply	

4.  Accumulate/Limit	

5.  Push to DM through indirect map	

	

•  Coding takes advantage of BLAS routines (cblas_dgemv) to optimize/

parallelize linear algebra steps.	

•  Timing tests show no need to overlap operations of multiple frame steps. 

Gets done in under 660 us, even in 30x mode.	


si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT )�1HT

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT )�1HT

1



RTC	  processing	  code	  
17	  lines	  of	  code…	  

…just	  kidding!	  This	  	  is	  the	  simulator	  in	  rtc.py.	  	  
But	  even	  it	  runs	  at	  ~	  hundred	  hz!	  



Documenta9on	  



Documented	  Modules…	  

•  RTC2 – the rtc engine	

•  RTC – the supervisor	

•  File system	

•  WFS – definition of mode sets, 

creation of reconstructor matrix	

•  IDL scripts - paramgen.pro	

•  GUI – (not yet..)	




On-‐line	  Docs	  
(example	  of	  HTML	  Sphinx	  auto-‐docs)	  	  



RTC	  System	  Status	  

Present Status:	

•  Low, Mid, and Support: These are mostly done in Python and c-

extensions now, but some scripts still in IDL	

•  No work has been done on the GUI	

•  RTC2 has all risks retired. Timing tests passed, up to 30x	

•  Code maintenance and doc systems in place.	

	

Surprises:	

•  All VMMs test passed; exceed 1.5kHz frame rate	

•  No kernel modules – no need for “RT” Linux	

•  The 24 CPU machine is not the fastest we have (!) (i7s doing better 

than Xeons)	

•  BLAS doing 2-3x better than “hand coded.” Surprising trade of || 

processing and pipeline	




“Bare	  minimum”	  RTC	  engine	  requirement	  
•  WFS	  Cam	  readout	  

–  1kHz	  “frame	  rate”:	  1	  ms	  allocated	  roughly	  as	  follows	  
•  985	  us	  expose	  
•  15	  us	  frame	  transfer	  

–  Camera	  collec9ng	  photons	  the	  majority	  of	  9me	  (98.5%	  duty	  cycle)	  

•  DM	  output	  
–  Get	  this	  out	  by	  the	  9me	  average	  data	  age	  =	  1.5	  ms	  

Camera	  Expose	  

Time	  

Camera	  Expose	   Camera	  Expose	  

Framebuffer	  
readout	  

Framebuffer	  
readout	  

Process	  
Data	  

Process	  
Data	  

Out	  to	  
DM	  

Average	  data	  age	  



How	  to	  do	  wind-‐predic9ve	  control?	  

•  30x mode only?	

•  Wind measurement algorithm	

–  Probably implemented in supervisor, or separate thread	


•  not real-time critical	

•  uses telemetry data	


–  Decimate(?) Anti-alias filter(?) the raw data	

•  RT Wind-Blown wavefront predictor	

–  Load new matrices and proceed with VMM?	

	
Or	

–  Code a Fourier version of the engine and “Fourier-shift”	



