ShaneAO

Real-Time Control

Donald Gavel
Predictive Control Meeting
May 15, 2013
Revised: Oct 24, 2013

Acknowledgements

- SPG Software Group
- Will Deich
- Kyle Lanclos
- Steve Allen
- John Gates
- Mark Reinig
- Graduate Students
- Andrew Norton
- Sri Srinath
- Helpful discussions with

Don Wiberg, UCSC, Dave Palmer, LLNL, (GPI group), Christoph Baranec, Caltech, Reed Riddle, Caltech (ROBO-AO group)

ShaneAO RTC -

The ShaneAO AO control system is implemented in a hierarchy of support software packages:

- Lowest level - fast computations - "bare minimum" data/parameter-driven program
- Mid level - data and parameter maintenance (diagnostics, calibration, parameter loading, operations modes)
- GUI level - user interface
- Support routines - generate parameters, do simulations and validations
- Code maintenance - cvs repository, Knowledge Tree documentation, online documentation

Requirements Definition Documents

 ShaneAO document server (KnowledgeTree) links- RTC Software Definition Document 011bu
- RTC Timing Requirements 011bj
- RTC Data Requirements 011bk

RTC Hardware

Hardware/RTC data flow

Detail: hardware pieces in the data flow paths

TT Cam "Lil-Joe"

ShaneAO allows for 3 WFS architectures： $8 x, 16 x, 30 x$

\％\because	\＃\％	：\because	\cdots	－	\because－	：	$\because \because$ $\because \because$ $\because ⿰ 口 口$
			\bigcirc				
$\because \because$	20.	$\because \because$	$\because \because$	$\because \because$	$\because:$		$\because \because$
－	\cdots	\cdots	\cdots	\cdots	\cdots	$\because \because$	$\because \cdot$
I	\cdots	－0			－0．	\cdots	
	$\because \because$		CO：	$\because:$		$\because \because$	90：
O－	－	： 0	\because	\because	\bigcirc	$\because \cdot$	
－	$\because \cdot$		$\because \cdot$	－		－	$\bigcirc{ }^{-1}$
： 1	$\because \because$	： 0	$\bigcirc \circ$			$\because \bullet$	$9{ }^{\circ} \mathrm{O}$
	－ $0 \cdot$						10．
$\because ?$	－	$\because \because$	$\because:$	\because	$\because \because$	$\because \because$	$\bigcirc \cdot \circ$
$\because \because$		：O．	$\because:$	$\because \cdot$	\because	－	\because
$\bigcirc \cdot$				\bigcirc	\because		\cdots
							\cdots
$\because 0$	$\because \because$	$\because \cdot$		－0．	$\because:$	\bigcirc	\because

－		－	．	－		－	1.	－	－	－	－	－ 0	－
		－	－	\cdots		，	，						\bigcirc
－	－	2	．	－	－	－	－	\bigcirc	－				\bigcirc
－	2	－	－	－	\bullet	－	－	\％	－	－	－	，	\bigcirc
\bigcirc	－	－	－	－	－	\bullet	－		－		－		\bigcirc
\bigcirc		－	－								－		\because
		－	－					8					\bigcirc
\bigcirc		－					－		－	－	－		\bigcirc
－		－					\bigcirc			－	－		\bigcirc
－	－	－	－		\cdots	－	－		－	\bigcirc	\bigcirc		\because
	－	－	－	。					－	－	－		\bigcirc
\bigcirc	－	－	－						－	？	？		\bigcirc
$\bigcirc \cdot$		\bigcirc	－	－	－	－	－		－		－		\bigcirc
－ 0			－		－	－	－						\bigcirc
－ 0	－												\bigcirc
$\square \cdot$	\bigcirc	－	－	－				\bigcirc	$1 \cdot$	－	－		\bigcirc

Woofer-Tweeter

Characteristic	BMC 1K MEMS DM (Tweeter)	Alpao Low-speed DM52-25 (Woofer)
Number of actuators	1024	52
Pitch	340 mm	2.5 mm
Flat shape surface figure error (Measured at the LAO)	Expecting $\sim 10 \mathrm{~nm}$ RMS*	< 7 nm RMS
Wavefront tip/tilt stroke	NA	$\begin{aligned} & +/-50.0 \mathrm{~mm} \text { Peak-to- } \\ & \text { Valley } \\ & \hline \end{aligned}$
Hysteresis	<1 nm	<\%1
Bandwidth	$>60 \mathrm{kHz}$	$>250.0 \mathrm{~Hz}$
Working aperture	9.8 mm	15 mm
Coating	Gold	Protected silver
Table 1.0 Deformable mirror characteristics of the woofer and tweeter DMs for the ShaneAQ system upgrade. *Several Boston Micromachines Corporation MEMS DMs have been measured at the LAO and were found on average to have an RMS surface flatness of roughly 10 nm . We expect similar results from our new mirror, though we not have yet performed this test with this MEMS DM.		

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, "Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and experimental results," SPIE Photonics West, 2013.

RTC Software

Modules...

- RTC2 - the rtc engine, written in C, dynamically linked to RTC
- RTC - the supervisor, written in Python
- File System
- WFS - definition of mode sets, creation of reconstructor matrix
- IDL scripts - paramgen. pro
- GUI

Parameter Preparation and Handling

- "Parameters" (matrix, offsets, and limits,...) are prepared outside the RTC.
- All calibration operations (flat, dark, refcent...) are done outside the RTC
- Parameters stored in FITS files
- Parameters loaded through the
 Python-C extension
- Python-C extension "peeks" at the RTC data via pointers, and displays diagnostics as you like

Preparing the Reconstructor

A Mathematical Framework for the Reconstructor

- Assume the wavefront is "fittable" by a set of modes

$$
\phi_{b}(x)=\sum_{i} c_{i} b_{i}(x) \quad e_{\phi}=\phi(x)-\phi_{b}(x)
$$

- $\left\{\mathrm{c}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}(\mathrm{x})\right\}$ is any vector space. These "internal" modes (basis functions $\left.\mathrm{b}_{\mathrm{i}}(\mathrm{x})\right)$ don't have to be orthonormal, can mix pieces of mode sets (Zernike, Fourier, DM modes, etc.). Solution is restricted to Hilbert subspace spanned by the basis functions
- The Shack-Hartmann wavefront sensor responds to the wavefront as

$$
s_{j}=\int_{j} w_{j}(x) \nabla \phi(x) d x+n_{j} ; \quad i \in\{\text { subaps }\}
$$

- And thus is related to the mode coefficients as

$$
\mathbf{s}=\mathbf{H} \mathbf{c}+e_{s}
$$

- Finally, we assume that the deformable mirrors can produce the mode set, with some fitting error, where $\mathrm{r}_{\mathrm{i}}(\mathrm{x})$ are actuator influence functions

$$
\phi_{b}(x)=\sum a_{i} r_{i}(x)+e_{f i t}
$$

- The actuator command vector is related to the mode coefficients by

$$
\mathbf{a}=\mathbf{A} \mathbf{c}
$$

Internal Mode Space Formulation is General

- Fourier reconstructor is in this formulation:
- Fourier-equivalent matrix form:

$$
\begin{aligned}
\mathbf{s} & =\mathbf{F}[i \mathbf{k}] \tilde{\phi}=\mathbf{H} \mathbf{c} \\
\mathbf{a} & =\mathbf{F} \tilde{\phi}=\mathbf{A} \mathbf{c} \\
\mathbf{F} & =\left[e^{i \mathbf{k x}}\right]
\end{aligned}
$$

- Fourier "reconstructor" is (mathematically)
subsumed in the internal mode space concept
- Modal weights are also subsumed
- -> An alternative implementation is needed to get at signals in Fourier space
- Poke-matrix reconstructor is in this formulation.
- The basis set can be the actuator influence functions ($c=a ; A=I$, and $H=$ the familiar "poke" matrix). Not recommended for ShaneAO 8x and 16x modes.
- Zernike mode reconstructors are in this formulation

Generating the Reconstruction Matrix

- The reconstructor strives to find the mode coefficients given the sensor readings, then set the actuators accordingly

$$
\begin{gathered}
\mathbf{H}^{\dagger}=\mathbf{P} \mathbf{H}^{T}\left(\mathbf{Q}+\mathbf{H P} \mathbf{H}^{T}\right)^{-1} \\
\mathbf{R}=\mathbf{A} \mathbf{H}^{\prime}
\end{gathered}
$$

- Regularized pseudo-inverse of H (Waffle Suppression, Minimum Variance Estimation)
- Only \mathbf{R} is used by the rtc (\#3 on viewgraph 19)
- Matrix sub-blocks are used to incorporate woofer mode de-projection and filtering...

ShaneAO DMs Mode Spaces

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, "Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and experimental results," SPIE Photonics West, 2013.

Dealing with the Woofer-Tweeter Pair

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

$$
\begin{gathered}
\phi_{w}(x)=\sum_{i} c_{w_{i}} b_{w_{i}}(x) \quad \phi_{t}(x)=\sum_{i} c_{t_{i}} b_{t_{i}}(x) \\
c_{w}=M_{w} \int b_{w_{i}}(x) \phi(x) d x \quad c_{t}=M_{t} \int b_{t i}(x) \phi(x) d x \\
M_{\left[{ }_{w}^{t}\right]}=\left[\int b_{i}(x) b_{j}(x) d x\right]^{-1}
\end{gathered}
$$

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

$$
\begin{gathered}
c_{w}=M_{w} \int b_{w_{i}}(x) \sum_{j} c_{t_{j}} b_{t_{j}}(x) d x \\
=M_{w} C_{w t} c_{t}
\end{gathered}
$$

where

$$
C_{w t}=\int b_{w_{i}}(x) b_{t_{j}}(x) d x
$$

Woofer and Tweeter mode spaces in matrix form

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices (avoiding integral signs)

$$
\begin{gathered}
M_{w}=\left[B_{w} B_{w}^{T}\right]^{-1} \quad M_{t}=\left[B_{t} B_{t}^{T}\right]^{-1} \quad C_{w t}=B_{w} B_{t}^{T} \\
B_{t}=\left[\begin{array}{c}
b_{t_{0}}(x) \\
b_{t_{1}}(x) \\
\cdots
\end{array}\right]
\end{gathered}
$$

and the phases themselves

$$
\phi_{t}(x)=B_{t}^{T} c_{t} \quad \phi_{w}(x)=B_{w}^{T} c_{w}
$$

Least-squares fits, projections, and cross correlations

Least Squares Fits of Woofer to Tweeter Modes

$$
\begin{gathered}
M_{w} C_{w t}=\left[B_{w} B_{w}^{T}\right]^{-1} B_{w} B_{t}^{T}=B_{w}^{\dagger} B_{t}^{T} \\
M_{t} C_{w t}^{T}=\left[B_{t} B_{t}^{T}\right]^{-1} B_{t} B_{w}^{T}=B_{T}^{\dagger} B_{w}^{T} \\
M_{t} C_{w t}^{T} M_{w} C_{w t}=B_{t}^{\dagger} B_{w}^{T} B_{w}^{\dagger} B_{t}^{T}
\end{gathered}
$$

Projection to woofer modes, followed by deprojection back to tweeter, is kosher

$$
M_{t} C_{w t}^{T} M_{w} C_{w t} c_{t}=B_{t}^{\dagger} B_{w}^{T} B_{w}^{\dagger} \underbrace{B_{t}^{T} c_{t}}_{\phi_{t}(x)}
$$

Then if

$$
\phi_{t}(x)=\phi_{w}(x)
$$

that is,

$$
B_{t}^{T} c_{t}=B_{w}^{T} c_{w}
$$

(which it is for the woofer-fittable part) then

$$
M_{t} C_{w t}^{T} M_{w} C_{w t} c_{t}=B_{t}^{\dagger} B_{w}^{T} B_{w}^{\dagger} \underbrace{B_{w}^{T} c_{w}}_{\phi_{w}(x)}
$$

Since $B_{w}^{\dagger} B_{w}^{T}=I$ and $B_{t}^{\dagger} B_{t}^{T}=I$ this collapses to

$$
M_{t} C_{w t}^{T} M_{w} C_{w t} c_{t}=B_{t}^{\dagger} B_{w}^{T} c_{w}=B_{t}^{\dagger} B_{t}^{T} c_{t}=c_{t}
$$

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

Woofer-Tweeter controller

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between woofer and tweeter using projections from tweeter space to woofer space. We don't exactly remove the woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer takes some time to respond.

The Woofer modes on the Tweeter are Low-Pass Filtered - so we need a filter expressed in state space

The simplest filter is single-pole:

$$
v_{k}=\alpha v_{k-1}+(1-\alpha) u_{k-1} ; \quad|\alpha|<1
$$

This has a z-transform transfer function

$$
H_{L}\left(z^{-1}\right)=\frac{z^{-1}(1-\alpha)}{1-\alpha z^{-1}}
$$

which has a pole at $z=\alpha$. The magnitude of the transfer function vs real frequency is shown in the figure, where we've substituted $z=e^{s T}=e^{i 2 \pi f T}$

The whole woofer-tweeter control law written in state-space form

We write the negative-feedback control loop in its state-space form:

$$
\begin{gathered}
v_{k}=\alpha v_{k-1}+(1-\alpha) u_{k-1}=\alpha v_{k-1}-(1-\alpha) M_{w} C_{w t} H^{\dagger} s_{k} \\
a_{t_{k}}=a_{t_{k-1}}-R s_{k}-A_{t} M_{t} C_{w t}^{T} v_{k-1} \\
a_{w_{k}}=a_{w_{k-1}}-A_{w} M_{w} C_{w t} H^{\dagger} s_{k}
\end{gathered}
$$

Or, in matrix form:

$$
\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v
\end{array}\right]_{k}=\left[\begin{array}{ccc}
I & 0 & -A_{t} M_{t} C_{w t}^{T} \\
0 & I & 0 \\
0 & 0 & \alpha
\end{array}\right]\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v
\end{array}\right]_{k-1}-\left[\begin{array}{c}
R \\
A_{w} M_{w} C_{w t} H^{\dagger} \\
(1-\alpha) M_{w} C_{w t} H^{\dagger}
\end{array}\right] s_{k}
$$

...and, with more matrix form manipulation...

which can be written in the form

$$
\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v
\end{array}\right]_{k}=\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v
\end{array}\right]_{k-1}+\underbrace{\left[\begin{array}{cc}
-R & -A_{t} M_{t} C_{w t}^{T} \\
-A_{w} M_{w} C_{w t} H^{\dagger} & 0 \\
-(1-\alpha) M_{w} C_{w t} H^{\dagger} & -(1-\alpha)
\end{array}\right]}_{R^{\prime}} \underbrace{\left[\begin{array}{c}
s_{k} \\
v_{k-1}
\end{array}\right]}_{s_{k}^{\prime}}
$$

or

$$
a_{k}=a_{k-1}+R^{\prime} s_{k}^{\prime}
$$

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R^{\prime}, which would be qalculated in the support processing scripts, then loaded using the supervisor module rtc.

This is all there is to it folks!

Stability Analysis

How the WFS responds to DM changes:

$$
s_{k}=H_{t} A_{t}^{\dagger} a_{t_{k-1}}+H_{w} A_{w}^{\dagger} \bar{a}_{w_{k-1}}
$$

How the Woofer responds slower:

$$
\bar{a}_{w_{k}}=\beta \bar{a}_{w_{k-1}}+(1-\beta) a_{w_{k-1}}
$$

This allows us to write the closed-loop matrix equation

$$
\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v \\
\bar{a}_{w}
\end{array}\right]_{k}=\left[\begin{array}{cccc}
I & 0 & -A_{t} M_{t} C_{w t}^{T} & 0 \\
0 & I & 0 & 0 \\
0 & 0 & \alpha & 0 \\
0 & (1-\beta) & 0 & \beta
\end{array}\right]\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v \\
\bar{a}_{w}
\end{array}\right]_{k-1}-\left[\begin{array}{c}
A_{t} H_{t}^{\dagger} \\
A_{w} M_{w} C_{w t} H_{t}^{\dagger} \\
(1-\alpha) M_{w} C_{w t} H_{t}^{\dagger} \\
0
\end{array}\right]\left[\begin{array}{llll}
H_{t} A_{t}^{\dagger} & 0 & 0 & H_{w} A_{w}^{\dagger}
\end{array}\right]\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v \\
\bar{a}_{w}
\end{array}\right]_{k-1}
$$

or

$$
\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v \\
\bar{a}_{w}
\end{array}\right]_{k}=\left[\begin{array}{cccc}
I-A_{t} H_{t}^{\dagger} H_{t} A_{t}^{\dagger} & 0 & -A_{t} M_{t} C_{w t}^{T} & -A_{t} H_{t}^{\dagger} H_{w} A_{w}^{\dagger} \\
-A_{w} M_{w} C_{w t} H_{t}^{\dagger} H_{t} A_{t}^{\dagger} & I & 0 & -A_{w} M_{w} C_{w t} H_{t}^{\dagger} H_{w} A_{w}^{\dagger} \\
-(1-\alpha) M_{w} C_{w t} H_{t}^{\dagger} H_{t} A_{t}^{\dagger} & 0 & \alpha & -(1-\alpha) M_{w} C_{w t} H_{t}^{\dagger} H_{w} A_{w}^{\dagger} \\
0 & (1-\beta) & 0 & \beta
\end{array}\right]\left[\begin{array}{c}
a_{t} \\
a_{w} \\
v \\
\bar{a}_{w}
\end{array}\right]_{k-1}
$$

More compactly:

$$
a_{k}^{\prime}=T a_{k-1}^{\prime}
$$

Stability is assured if

$$
|\lambda(T)|<1
$$

Stable if all eigenvalues are inside unit circle
that is the eigenvalues of T are all inside the unit circle.

Stability can be enforced

Stability can be enforced if we do two things:

1) use a leaky integrator for the actuators, i.e. replace the I 's in the first matrix by γI, where $0<\gamma<1$.
2) multiply the reconstructor matrix by a feedback gain:

$$
H^{\dagger} \rightarrow g H^{\dagger}
$$

where g is made sufficiently small. As $g \rightarrow 0$ the eigenvalues of T converge to three degenerate eigenvalues, γ, α, and β which are all less than 1 in magnitude. Therefore there is a range of gains $g>0$ where the system is stable. The response time of the system to input disturbance is

$$
\tau_{r}=-T / \ln \left|\lambda_{\max }\right|
$$

where T is the sample period.

For Insight: Let's Look at the Mode Coefficients

For further analysis it is instructive to note that only the mode sets selected by A_{t} and A_{w} are dynamically affected by feedback. The orthogonal parts of the Hilbert space are in the null space of the reconstructor, so they are neither excited by the disurbance nor fed back but are simply left to decay at a rate set by γ without any affect on longterm stability. If we carry just the selected mode coefficients in our analysis state-vector, the stability equation is:

$$
\left[\begin{array}{c}
c_{t} \\
c_{w} \\
v \\
\bar{c}_{w}
\end{array}\right]_{k}=\left[\begin{array}{cccc}
\gamma-g H_{t}^{\dagger} H_{t} & 0 & M_{t} C_{w t}^{T} & -g H_{t}^{\dagger} H_{w} \\
-g M_{w} C_{w t} H_{t}^{\dagger} H_{t} & \gamma & 0 & -g M_{w} C_{w t} H_{t}^{\dagger} H_{w} \\
-(1-\alpha) g M_{w} C_{w t} H_{t}^{\dagger} H_{t} & 0 & \alpha & -(1-\alpha) g M_{w} C_{w t} H^{\dagger} H_{w} \\
0 & (1-\beta) & 0 & \beta
\end{array}\right]\left[\begin{array}{c}
c_{t} \\
c_{w} \\
v \\
\bar{c}_{w}
\end{array}\right]_{k-1}
$$

Feedback Dynamics of the mode coefficients

Mode Spaces Decouple...

We now make some reasonable approximations to help further simplify the analysis. First, assume that the reconstructor obeys

$$
H_{t}^{\dagger} H_{t} \approx I
$$

Also, assume that the modes of the woofer match exacly a subset of modes of the tweeter, and furthermore, that the modes in this set are orthonormal. Then

$$
C_{w t}=\left[\begin{array}{ll}
I_{n_{w}} & 0
\end{array}\right] \quad H_{t}^{\dagger} H_{w} \approx\left[\begin{array}{c}
I_{n_{w}} \\
0
\end{array}\right]
$$

and

$$
M_{w}=I_{n_{w}} \quad M_{t}=I_{n_{t}}
$$

where n_{w} is the number of controlled modes on the woofer and n_{t} is the number of controlled modes of the tweeter. Then the stability equation is

$$
\left[\begin{array}{c}
c_{t} \\
c_{w} \\
v \\
\bar{c}_{w}
\end{array}\right]_{k}=\left[\begin{array}{cccc}
\gamma-g & 0 & {\left[\begin{array}{c}
I_{n_{w}} \\
0
\end{array}\right]} & -g\left[\begin{array}{c}
I_{n_{w}} \\
0
\end{array}\right] \\
-g\left[I_{n_{w}}\right. & 0] & \gamma & 0 \\
-(1-\alpha) g\left[I_{n_{w}}\right. & 0] & 0 & \alpha \\
0 & (1-\beta) & 0 & -(1-\alpha) g \\
0
\end{array}\right]\left[\begin{array}{c}
c_{t} \\
c_{w} \\
v \\
\bar{c}_{w}
\end{array}\right]_{k-1}
$$

Mode Spaces Decouple Into Shared and Tweeter-Only Modes

The dynamics separate into two independent subspaces, one associated with the modes shared by woofer and tweeter, and ones associated with tweeter modes not being sent to the woofer. That is

$$
\left[\begin{array}{c}
c_{t \in w} \\
c_{w} \\
v \\
\bar{c}_{w}
\end{array}\right]_{k}=\left[\begin{array}{cccc}
\gamma-g & 0 & -1 & -g \\
-g & \gamma & 0 & -g \\
-(1-\alpha) g & 0 & \alpha & -(1-\alpha) g \\
0 & (1-\beta) & 0 & \beta
\end{array}\right]\left[\begin{array}{c}
c_{t \in w} \\
c_{w} \\
v \\
\bar{c}_{w}
\end{array}\right]_{k-1}
$$

for the shared modes, and
Shared modes: 4-state

$$
\left[c_{t \notin w}\right]_{k}=(\gamma-g)\left[c_{t \notin w}\right]_{k-1}
$$

for modes isolated to the tweeter.
Tweeter-only modes: scalar-state

Simulation Results:

Everything is Stable and Behaves as Expected

Coupled Woofer-Tweeter Mode with a Step Function + Rapid Sinusoid Disturbance

Figure 1 A simulation of the $c_{t \in w}$ and \bar{c}_{w} states in response to disturbance of a unit step plus sinusoid of magnitude 0.3 at 250 Hz . Left: with zero measurement noise, right, with 0.07 rms measurement noise. The simulation parameters are $\alpha=0.82, \beta=0.82, \gamma=1, g=1$.

RTC module

RTC processing steps

- Done in serial by the RTC engine (RTC2 module), written in C-language:

1. Map pixels to subaps (indirect map)
2. Centroid

$$
\mathbf{s}_{i}=\mathbf{W} \mathbf{p}_{i} ; i \in \text { subaps }
$$

3. Matrix-multiply

$$
\partial \mathbf{a}=-\alpha \mathbf{a}+\beta \mathbf{R} \mathbf{s}
$$

4. Accumulate/Limit
5. Push to DM through indirect map

- Coding takes advantage of BLAS routines (cblas_dgemv) to optimize/ parallelize linear algebra steps.
- Timing tests show no need to overlap operations of multiple frame steps. Gets done in under 660 us, even in 30x mode.

RTC processing code 17 lines of code...

```
# This simulates one step of the real-time control loop, given the current parameters
def oneStep(self);
    # wfs camera (one would use i_map instead of u_map with the real interlaced camera data)
    pix = (self+wfs[self+u_map] - self+wfs_background) * self,wfs_flat
# centroider
wx = self+centl|ts[0,+]
wy = self+centluts[1, +}
wi = self+centllts[2,+
for k in range(self.ns):
        P = pix[k*25*(k+1)*25]
        x = dot ( }\textrm{P},\omega\textrm{\omega}
        y}=\operatorname{dot}(p,w,y
        i = dot (p,wi) + 1.
        self+s[k] = x/i
        self+s[k+self+ns] = y/i
self+s[0+2*self+ns] -= self+s_ref
# reconstructor
self+da = dot(self+cm,self+s)
# integrator
a = (self+a - self+a0)*self+integrator_bleeds + self+a0 + self.da
self+a = clip(a,self+a_limit[0,+],self+a_limit[1,*])
self+buf[self+tweeter_map] = self+a[0+1024]
self+woof = self+a[1024%1024+self+na_woof]
```

...just kidding! This is the simulator in rtc.py. But even it runs at \sim hundred hz!

Documentation

Documented Modules...

- RTC2 - the rtc engine
- RTC - the supervisor
- File system
- WFS - definition of mode sets, creation of reconstructor matrix
- IDL scripts - paramgen.pro
- GUI - (not yet..)

On-line Docs

(example of HTML Sphinx auto-docs)

ShaneAO 1.0 documentation 》 previous Inext Imodites Index	
Table of Contents RTC - RTC class mathods AIC class data - RTC instance data - To Do	RTC
	RTC class methods
	class rte. . rta (mode)
Previous topic Introduction	RTC means "Real-Time Controller."
	This class implements the python intertace to the real-ime engine.
Next topic ATC2	
	The work tlow logic:
This Page Show Source	- intialize the superisor. -it reads in the parameters and puts the ric in go state, open loop
	- a call to open loop saves the closed loop gain and opens the loop by setting the gain to zero
	-. a caller call to cose loon sets the loop gain to the saved gain. if this gain is not zero, the loop is closed
G	- a call to set gain closes the loop it the gain is non-zero
Enter search terms or a module, class or function name.	- a call to set gain with zero gain opens the loop, but it does not save the last gain
	- there is a detauit gan. restore it win a call to set gatin (detaut').
	- If you want to change the gain without closing the loop, modily savedGain
	- you can also modity the defauticain
	Example start up and un code:
	$\chi^{u}=\mathrm{rta}\left(16 \mathrm{l}^{\prime}\right)$
	u.set_goin(5.) \#this can be done on the fly
	Example system moditication cycle:
	If execute codes to generate ond store new matrices (using module wfs, etc.)
	close_loop 0 Close the AO loop
	g०0
	Start or resume the controller engine.
	lord)
	Load tells the interface to read the controller definition files, associated with self.mode, into the real-time controller cextension's memory.
	As a converience, the definitions are also assigned to instance variables within the ric object as well.
	manystep (nSteps) Run the ric simulator many steps.
	onestep 0 The interface has its own RTC simulator. This method runs one step of it. This is handy for diagnostics as the rte engine should produce results identical to the simulator.
	open_1oop 0 Open the AO boop
	set_goin (gain)

manystep (noteps)
Run the ric simulator many steps.
onestep 0
The interface has its own RTC simulator. This method runs one step of it. This is handy for diagnostics as the ric engine should The interace has its ow the simulator.
open_loop 0
Open the AO loop
set_goin (gain)
Set the gain of the real-time controller.
status ()
Report the current AO control system state, including rumning state of the c -exension module, and the loop status and gain
stop 0
Stop the controller engine (computations halted)
RTC class data
rte. pdict8x
rte. pdict16x
rtc. pdict $30 x$
These are
RTC instance data
An ric contains instance variables for every parameter that is loaded from FITS files, plus a few internal ones of its own. Here are some of the important ones.
self. goin
The gain of the control loop. It multiples controlMatrix.
self. controlithtrix
The control matrix, as loaded from the FITS file.
self. cm
The control matrix atter it is multipled by the gain. This is loaded into rtc 2.
self. mode
The string '8x', '16x', or ' 30 x ' depending on the wavefront sensing mode.
self. loop
self. loop
Loop state - either 'open' or 'closed'

RTC System Status

Present Status:

- Low, Mid, and Support: These are mostly done in Python and cextensions now, but some scripts still in IDL
- No work has been done on the GUI
- RTC2 has all risks retired. Timing tests passed, up to 30x
- Code maintenance and doc systems in place.

Surprises:

- All VMMs test passed; exceed 1.5 kHz frame rate
- No kernel modules - no need for "RT" Linux
- The 24 CPU machine is not the fastest we have (!) (i7s doing better than Xeons)
- BLAS doing 2-3x better than "hand coded." Surprising trade of II processing and pipeline

"Bare minimum" RTC engine requirement

- WFS Cam readout
- 1 kHz "frame rate": 1 ms allocated roughly as follows
- 985 us expose
- 15 us frame transfer
- Camera collecting photons the majority of time (98.5% duty cycle)
- DM output
- Get this out by the time average data age $=1.5 \mathrm{~ms}$

How to do wind-predictive control?

- 30x mode only?
- Wind measurement algorithm
- Probably implemented in supervisor, or separate thread
- not real-time critical
- uses telemetry data
- Decimate(?) Anti-alias filter(?) the raw data
- RT Wind-Blown wavefront predictor
- Load new matrices and proceed with VMM?

Or

- Code a Fourier version of the engine and "Fourier-shift"

