
ShaneAO	

Real-­‐Time	
 Control	

Donald	
 Gavel	

Predic9ve	
 Control	
 Mee9ng	

May	
 15,	
 2013	

Revised:	
 Oct	
 24,	
 2013	

Acknowledgements	

•  SPG	
 SoHware	
 Group	

–  Will	
 Deich	

–  Kyle	
 Lanclos	

–  Steve	
 Allen	

–  John	
 Gates	

–  Mark	
 Reinig	

•  Graduate	
 Students	

–  Andrew	
 Norton	

–  Sri	
 Srinath	

•  Helpful	
 discussions	
 with	

Don	
 Wiberg,	
 UCSC,	
 Dave	
 Palmer,	
 LLNL,	
 (GPI	
 group),	
 Christoph	
 Baranec,	

Caltech,	
 Reed	
 Riddle,	
 Caltech	
 (ROBO-­‐AO	
 group)	

ShaneAO	
 RTC	
 -­‐	
 	
 	

The ShaneAO AO control system is implemented in a hierarchy of support
software packages:	

	

•  Lowest level – fast computations – “bare minimum” data/parameter-driven

program	

•  Mid level – data and parameter maintenance (diagnostics, calibration,

parameter loading, operations modes)	

•  GUI level – user interface	

•  Support routines – generate parameters, do simulations and validations	

•  Code maintenance – cvs repository, Knowledge Tree documentation, on-

line documentation	

Requirements	
 Defini9on	
 Documents	

ShaneAO	
 document	
 server	
 (KnowledgeTree)	
 links	

•  RTC	
 SoHware	
 Defini9on	
 Document	
 011bu	

•  RTC	
 Timing	
 Requirements	
 011bj	

•  RTC	
 Data	
 Requirements	
 011bk	

	

RTC	
 Hardware	

Hardware/RTC	
 data	
 flow	

WFS	
 Cam	

TT	
 Cam	

WFS	

Processor	

Woofer	
 Mode	

Projector	

DM	
 Volts	

Driver	

Tweeter	
 DM	

Woofer	
 DM	

Reconstructor	

Tip/Tilt	

Processor	

Woofer	

Driver	

PC	

Linux	
 Box	

Detail:	
 hardware	
 pieces	
 in	
 the	
 data	

flow	
 paths	

WFS	

Processor	

Woofer	
 Mode	

Projector	

DM	
 Volts	

Driver	
 Reconstructor	

Tip/Tilt	

Processor	

Woofer	

Driver	

PC	
 Linux	
 Box	

De
te
ct
or
	

He
ad
	

Sc
iM

ea
su
re
	

Co
nt
ro
lle
r	

WFS	
 Cam	
 “Big-­‐Joe”	

ED
T	

8x
	

	
 F
ra
m
e	

Gr
ab
be

r	

ED
T	

4x
	

	
 F
ra
m
e	

Gr
ab
be

r	

De
te
ct
or
	

He
ad
	

Sc
iM

ea
su
re
	

Co
nt
ro
lle
r	

TT	
 Cam	
 “Lil-­‐Joe”	

Tweeter	
 DM	

Woofer	
 DM	

BM
C	

M
irr
or
	

AL
PA

O
	

M
irr
or
	

Ca
m
br
id
ge
	

In
no

va
<o

n	

D/
A-­‐
Am

pl
ifi
er
	

VM
et
ro
	

	
 D
PI
O
2	

Di
g	

I/
O
	

AD
Li
nk
	

Di
g	

I/
O
	

AL
PA

O
	

Dr
iv
er
	

ShaneAO	
 allows	
 for	
 3	
 WFS	
 architectures:	

8x,	
 16x,	
 30x	

	
 	
 	
 	

	
 	
 	
 	

Woofer-­‐Tweeter	

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, 	

and Daren Dillon, “Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and
experimental results,” SPIE Photonics West, 2013.	

	

RTC	
 SoHware	

Modules…	

•  RTC2 – the rtc engine, written in C, dynamically linked to RTC!
•  RTC – the supervisor, written in Python	

•  File System	

•  WFS – definition of mode sets, creation of reconstructor matrix	

•  IDL scripts - paramgen.pro!
•  GUI	

Parameter	
 Prepara9on	
 and	
 Handling	

•  “Parameters” (matrix, offsets, and
limits,…) are prepared outside the
RTC.	

•  All calibration operations (flat,
dark, refcent…) are done outside
the RTC	

•  Parameters stored in FITS files	

•  Parameters loaded through the

Python-C extension	

•  Python-C extension “peeks” at

the RTC data via pointers, and
displays diagnostics as you like	

RTC	
 python	

module	

(supervisor)	

RTC2	
 c-­‐
extension	

module	

(engine)	

FITS	
 files	

rtc2.load	

rtc2.peek	

Preparing	
 the	
 Reconstructor	

A	
 Mathema9cal	
 Framework	
 for	
 the	

Reconstructor	
 	

•  Assume the wavefront is “fittable” by a set of modes	

	

•  {ci,bi(x)} is any vector space. These “internal” modes (basis functions
bi(x)) don’t have to be orthonormal, can mix pieces of mode sets (Zernike,
Fourier, DM modes, etc.). Solution is restricted to Hilbert subspace
spanned by the basis functions	

•  The Shack-Hartmann wavefront sensor responds to the wavefront as	

•  And thus is related to the mode coefficients as	

•  Finally, we assume that the deformable mirrors can produce the mode set,
with some fitting error, where ri(x) are actuator influence functions	

•  The actuator command vector is related to the mode coefficients by	

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT)�1HT

s = Hc

a = Ac

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x)

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc+ e

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc+ es

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx+ nj ; i 2 {subaps}

s = Hc+ es

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

Internal	
 Mode	
 Space	
 Formula9on	
 is	
 General	

•  Fourier reconstructor is in this formulation:	

–  	

 Fourier-equivalent matrix form:	

–  	

 Fourier “reconstructor” is (mathematically)	

	

subsumed in the internal mode space concept	

–  	

 Modal weights are also subsumed	

–  	

 -> An alternative implementation is needed to get at signals in Fourier

space	

•  Poke-matrix reconstructor is in this formulation. 	

–  The basis set can be the actuator influence functions (c=a; A=I, and H =
the familiar “poke” matrix). Not recommended for ShaneAO 8x and
16x modes.	

•  Zernike mode reconstructors are in this formulation	

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Genera9ng	
 the	
 Reconstruc9on	
 Matrix	

•  The reconstructor strives to find the mode coefficients given the sensor
readings, then set the actuators accordingly	

•  Regularized pseudo-inverse of H (Waffle Suppression, Minimum Variance
Estimation)	

•  Only R is used by the rtc (#3 on viewgraph 19)	

•  Matrix sub-blocks are used to incorporate woofer mode de-projection and

filtering…	

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc+ es

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

ShaneAO	
 DMs	
 Mode	
 Spaces	

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, “Performance assessment of a candidate
architecture for real-time woofer-tweeter controllers: Simulation and experimental results,” SPIE Photonics West, 2013.	

	

Dealing	
 with	
 the	
 Woofer-­‐Tweeter	
 Pair	

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

Woofer	
 and	
 Tweeter	
 mode	
 spaces	

	
 in	
 matrix	
 form	

Least-­‐squares	
 fits,	
 projec9ons,	
 and	
 cross	

correla9ons	

Projec9on	
 to	
 woofer	
 modes,	
 followed	
 by	
 de-­‐
projec9on	
 back	
 to	
 tweeter,	
 is	
 kosher	

…so	
 long	
 as	
 the	
 woofer	
 modes	
 are	
 in	
 the	
 tweeter’s	
 Hilbert	
 space	

Woofer-­‐Tweeter	
 controller	

LPF	

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

which can be written in the form

2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or

a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Tweeter	

which can be written in the form

2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or

a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Woofer	

-­‐	

+	
 s	

LPF	
 =	

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

t

c
t| {z }

�t(x)

Then if
�
t

(x) = �
w

(x)

that is,
BT

t

c
t

= BT

w

c
w

(which it is for the woofer-fittable part) then

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

w

c
w| {z }

�w(x)

Since B†
w

BT

w

= I and B†
t

BT

t

= I this collapses to

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

c
w

= B†
t

BT

t

c
t

= c
t

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

[Control Loop Figure goes here] Z
= 1 + z�1

The simplest filter is single-pole:

v
k

= ↵v
k�1 + (1� ↵)u

k

; |↵| < 1

This has a z-transform transfer function

H
L

(z�1) =
1� ↵

1� ↵z�1

so there is a pole at z = ↵ and a zero at z = 0. The magnitude of the transfer function vs real frequency is
shown in the figure, where we’ve substituted z = esT = ei2⇡fT

We write the control loop diagram in its state-space form:

v
k

= ↵v
k�1 + (1� ↵)u

k

= ↵v
k

+ (1� ↵)M
w

C
wt

Rs
k

a
tk = a

tk�1 +Rs
k

�M
t

CT

wt

v
k

a
wk = a

wk�1 +M
w

C
wt

Rs
k

2

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

t

c
t| {z }

�t(x)

Then if
�
t

(x) = �
w

(x)

that is,
BT

t

c
t

= BT

w

c
w

(which it is for the woofer-fittable part) then

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

w

c
w| {z }

�w(x)

Since B†
w

BT

w

= I and B†
t

BT

t

= I this collapses to

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

c
w

= B†
t

BT

t

c
t

= c
t

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

[Control Loop Figure goes here] Z
= 1 + z�1

The simplest filter is single-pole:

v
k

= ↵v
k�1 + (1� ↵)u

k

; |↵| < 1

This has a z-transform transfer function

H
L

(z�1) =
1� ↵

1� ↵z�1

so there is a pole at z = ↵ and a zero at z = 0. The magnitude of the transfer function vs real frequency is
shown in the figure, where we’ve substituted z = esT = ei2⇡fT

We write the control loop diagram in its state-space form:

v
k

= ↵v
k�1 + (1� ↵)u

k

= ↵v
k

+ (1� ↵)M
w

C
wt

Rs
k

a
tk = a

tk�1 +Rs
k

�M
t

CT

wt

v
k

a
wk = a

wk�1 +M
w

C
wt

Rs
k

2

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

t

c
t| {z }

�t(x)

Then if
�
t

(x) = �
w

(x)

that is,
BT

t

c
t

= BT

w

c
w

(which it is for the woofer-fittable part) then

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

w

c
w| {z }

�w(x)

Since B†
w

BT

w

= I and B†
t

BT

t

= I this collapses to

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

c
w

= B†
t

BT

t

c
t

= c
t

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

[Control Loop Figure goes here] Z
= 1 + z�1

The simplest filter is single-pole:

v
k

= ↵v
k�1 + (1� ↵)u

k

; |↵| < 1

This has a z-transform transfer function

H
L

(z�1) =
1� ↵

1� ↵z�1

so there is a pole at z = ↵ and a zero at z = 0. The magnitude of the transfer function vs real frequency is
shown in the figure, where we’ve substituted z = esT = ei2⇡fT

We write the control loop diagram in its state-space form:

v
k

= ↵v
k�1 + (1� ↵)u

k

= ↵v
k

+ (1� ↵)M
w

C
wt

Rs
k

a
tk = a

tk�1 +Rs
k

�M
t

CT

wt

v
k

a
wk = a

wk�1 +M
w

C
wt

Rs
k

2

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0


s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

The	
 Woofer	
 modes	
 on	
 the	
 Tweeter	
 are	
 Low-­‐Pass	

Filtered	
 –	
 so	
 we	
 need	
 a	
 filter	
 expressed	
 in	
 state	
 space	

x	

1	
 f	

Re z	

Im z	

HL(z)	

The	
 whole	
 woofer-­‐tweeter	
 control	
 law	
 wrijen	

in	
 state-­‐space	
 form	

Or, in matrix form:	

…and,	
 with	
 more	
 matrix	
 form	
 manipula9on…	

This	
 is	
 all	
 there	
 is	
 to	
 it	
 folks!	

Stability	
 Analysis	

How	
 the	
 WFS	
 responds	
 to	
 DM	
 changes:	

	

How	
 the	
 Woofer	
 responds	
 slower:	

	

Stable	
 if	
 all	
 eigenvalues	
 are	
 inside	
 unit	
 circle	

Stability	
 can	
 be	
 enforced	

For	
 Insight:	
 Let’s	
 Look	
 at	
 the	
 Mode	
 Coefficients	

Feedback	
 Dynamics	
 of	
 the	
 mode	
 coefficients	

Mode	
 Spaces	
 Decouple…	

Mode	
 Spaces	
 Decouple	

Into	
 Shared	
 and	
 Tweeter-­‐Only	
 Modes	

Shared	
 modes:	
 4-­‐state	

Tweeter-­‐only	
 modes:	
 scalar-­‐state	

Simula9on	
 Results:	

Everything	
 is	
 Stable	
 and	
 Behaves	
 as	
 Expected	

Coupled	
 Woofer-­‐Tweeter	

Mode	
 with	
 a	
 Step	
 Func9on	
 +	

Rapid	
 Sinusoid	
 Disturbance	
 Woofer	

Tweeter	

Residual	

RTC	
 module	

RTC	
 processing	
 steps	

•  Done in serial by the RTC engine (RTC2 module), written in C-language:	

	

1.  Map pixels to subaps (indirect map)	

2.  Centroid	

3.  Matrix-multiply	

4.  Accumulate/Limit	

5.  Push to DM through indirect map	

	

•  Coding takes advantage of BLAS routines (cblas_dgemv) to optimize/

parallelize linear algebra steps.	

•  Timing tests show no need to overlap operations of multiple frame steps.

Gets done in under 660 us, even in 30x mode.	

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT)�1HT

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT)�1HT

1

RTC	
 processing	
 code	

17	
 lines	
 of	
 code…	

…just	
 kidding!	
 This	
 	
 is	
 the	
 simulator	
 in	
 rtc.py.	
 	

But	
 even	
 it	
 runs	
 at	
 ~	
 hundred	
 hz!	

Documenta9on	

Documented	
 Modules…	

•  RTC2 – the rtc engine	

•  RTC – the supervisor	

•  File system	

•  WFS – definition of mode sets,

creation of reconstructor matrix	

•  IDL scripts - paramgen.pro	

•  GUI – (not yet..)	

On-­‐line	
 Docs	

(example	
 of	
 HTML	
 Sphinx	
 auto-­‐docs)	
 	

RTC	
 System	
 Status	

Present Status:	

•  Low, Mid, and Support: These are mostly done in Python and c-

extensions now, but some scripts still in IDL	

•  No work has been done on the GUI	

•  RTC2 has all risks retired. Timing tests passed, up to 30x	

•  Code maintenance and doc systems in place.	

	

Surprises:	

•  All VMMs test passed; exceed 1.5kHz frame rate	

•  No kernel modules – no need for “RT” Linux	

•  The 24 CPU machine is not the fastest we have (!) (i7s doing better

than Xeons)	

•  BLAS doing 2-3x better than “hand coded.” Surprising trade of ||

processing and pipeline	

“Bare	
 minimum”	
 RTC	
 engine	
 requirement	

•  WFS	
 Cam	
 readout	

–  1kHz	
 “frame	
 rate”:	
 1	
 ms	
 allocated	
 roughly	
 as	
 follows	

•  985	
 us	
 expose	

•  15	
 us	
 frame	
 transfer	

–  Camera	
 collec9ng	
 photons	
 the	
 majority	
 of	
 9me	
 (98.5%	
 duty	
 cycle)	

•  DM	
 output	

–  Get	
 this	
 out	
 by	
 the	
 9me	
 average	
 data	
 age	
 =	
 1.5	
 ms	

Camera	
 Expose	

Time	

Camera	
 Expose	
 Camera	
 Expose	

Framebuffer	

readout	

Framebuffer	

readout	

Process	

Data	

Process	

Data	

Out	
 to	

DM	

Average	
 data	
 age	

How	
 to	
 do	
 wind-­‐predic9ve	
 control?	

•  30x mode only?	

•  Wind measurement algorithm	

–  Probably implemented in supervisor, or separate thread	

•  not real-time critical	

•  uses telemetry data	

–  Decimate(?) Anti-alias filter(?) the raw data	

•  RT Wind-Blown wavefront predictor	

–  Load new matrices and proceed with VMM?	

	

Or	

–  Code a Fourier version of the engine and “Fourier-shift”	

