ShaneAO
Real-Time Control

Donald Gavel
Predictive Control Meeting
May 15, 2013
Revised: Oct 24, 2013

Acknowledgements

* SPG Software Group
— Will Deich
— Kyle Lanclos
— Steve Allen
— John Gates
— Mark Reinig
* Graduate Students

— Andrew Norton
— Sri Srinath

* Helpful discussions with

Don Wiberg, UCSC, Dave Palmer, LLNL, (GPI group), Christoph Baranec,
Caltech, Reed Riddle, Caltech (ROBO-AO group)

ShaneAQO RTC -

The ShaneAO AO control system is implemented in a hierarchy of support
software packages:

* Lowest level — fast computations — “bare minimum” data/parameter-driven
program

* Mid level — data and parameter maintenance (diagnostics, calibration,
parameter loading, operations modes)

* GUI level — user interface
* Support routines — generate parameters, do simulations and validations

* Code maintenance — cvs repository, Knowledge Tree documentation, on-
line documentation

Requirements Definition Documents
ShaneAO document server (KnowledgeTree) links

e RTC Software Definition Document o11bu

* RTC Timing Requirements 011bj
* RTC Data Requirements o11bk

RTC Hardware

Hardware/RTC data flow

e ';
1

—>| Reconstructor Olts E

i

1

1

1

1

1

1

1

l

| Processor Driver

: Jt

|

T e e ———————————]
1 1

1 |

| |

) Tip/Tilt | | Woofer Mode | | = r---oomooemmo -
i Processor Projector b

i E—ia Wo.ofer

: . Driver

' Linux Box : i

! 1

in the data

leces

hardware pi

Detail

flow paths

JOJAN
IWE

Jayldwy-v/a
uonbaouu|
abprLqwn)

Tweeter DM

DM Volts
Driver

JaALIQ
ovdiv

Woofer DM

A

0/1381a

Aquriav

Reconstructor

WEFS

Processor

Jaqgeso
awe.4

X8 1d4

13[|0J43u0)
2INSDINIIS

peaH
J012913(

Jaqqeun

aweld
Xy 149

o

a
1
1
v 1
s _
5.8 i
52 1
o a 1
= I
1
1
1
x|
= ol
mm ol
=9 x|
= |
o cli
|
1
1
1
1
1
1
1
1
1

J13||043u0)
3INSDINI2S

—— N -

RJ)

(@]

-

=

pesH -
10199137 m.w
T

T

ShaneAOQO allows for 3 WEFS architectures:
8x, 16x, 30x

b ! 1
ﬁ:\‘; N
“‘s‘ } &'
‘% — 1
{_/k\ - gr. ;
i } }
: , 1 :
EH AR il
== gt 7 Y] H
oo y X 2
h*'ﬁmumsmf";&g ..

Woofer-Tweeter

Figure 1. A) Image of the Tweeter DM. The 1024 B) Image of the Woofer DM, the -speed

actuator device from Boston Micromachines DM52-25. This DM will also function as the tip-tilt

Corporation has a reflective gold coating and a corrector. The device has a working aperture 15 mm

working aperture of 9.8 mm. and is coated with protected silver.

Characteristic BMC 1K Alpao Low-speed
MEMS DM (Tweeter) DM52-25 (Woofer)

Number of actuators 1024 52

Pitch 340 mm 2.5 mm

Flat shape surface figure Expecting ~ 10 nm <7 nm RMS

error RMS’

(Measured at the LAQ)

Wavefront tip/tilt stroke NA +/- 50.0 mm Peak-to-

Valley

Hysteresis <1nm < %1

Bandwidth > 60 kHz >250.0 Hz

Working aperture 9.8 mm 15 mm

Coating Gold Protected silver

Table 1.0 Deformable mirror characteristics of the woofer and tweeter DMs for the ShaneAQ system
upgrade. *Several Boston Micromachines Corporation MEMS DMs have been measured at the LAO and
were found on average to have an RMS surface flatness of roughly 10 nm. We expect similar results from
our new mirror, though we not have yet performed this test with this MEMS DM.

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath,
and Daren Dillon, “Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and
experimental results,” SPIE Photonics West, 2013.

RTC Software

Modules...

RTC2 — the rtc engine, written in C, dynamically linked to RTC
RTC — the supervisor, written in Python

File System

WFS — definition of mode sets, creation of reconstructor matrix
IDL scripts - paramgen.pro

GUI

Parameter Preparation and Handling

“Parameters” (matrix, offsets, and
limits,...) are prepared outside the
RTC.

All calibration operations (flat,
dark, refcent...) are done outside
the RTC

Parameters stored in FITS files

Parameters loaded through the
Python-C extension

Python-C extension “peeks” at
the RTC data via pointers, and
displays diagnostics as you like

al rtc2.|oad>

rtc2.peek

SUPErvisor) i

Preparing the Reconstructor

A Mathematical Framework for the
Reconstructor

Assume the wavefront is “fittable” by a set of modes

do(x) =) cibi(x) ep = ¢(z) — y()
{c,,b.(x)} 1s any vector space. These “internal” modes (basis functions
b.(x)) don’t have to be orthonormal, can mix pieces of mode sets (Zernike,
Fourier, DM modes, etc.). Solution is restricted to Hilbert subspace

spanned by the basis functions

The Shack-Hartmann wavefront sensor responds to the wavefront as

s;j = [wij(z)Ve(x)dr +n;; i€ {subaps}
And thus is related to the mode coefficients as
s = Hc + e,

Finally, we assume that the deformable mirrors can produce the mode set,
with some fitting error, where r,(x) are actuator influence functions

Pp(T) = Z a;1ri(x) + efit

The actuator command vector is related to the mode coefficients by
a=Ac

Internal Mode Space Formulation is General

Fourier reconstructor is in this formulation:
— Fourier-equivalent matrix form: s = F [@k] (5 — Hec
— Fourier “reconstructor” is (mathematically) a—=—F gg — Ac
subsumed in the internal mode space concept F — [eikx]
— Modal weights are also subsumed
— -> An alternative implementation is needed to get at signals in Fourier
space
Poke-matrix reconstructor is in this formulation.

— The basis set can be the actuator influence functions (c=a; A=I, and H =
the familiar “poke” matrix). Not recommended for ShaneAO 8x and
16x modes.

Zernike mode reconstructors are in this formulation

Generating the Reconstruction Matrix

The reconstructor strives to find the mode coefficients given the sensor
readings, then set the actuators accordingly

H' = PH'(Q + HPH")!
R = AH'

Regularized pseudo-inverse of H (Waffle Suppression, Minimum Variance
Estimation)

Only R is used by the rtc (#3 on viewgraph 19)

Matrix sub-blocks are used to incorporate woofer mode de-projection and
filtering...

ShaneAO DMs Mode Spaces

)
Figure 1. A) Image of the Tweeter DM. The 1024

actuator device from Boston Micromachines
Corporation has a reflective gold coating and a

working aperture of 9.8 mm.

B) Image of the Woofer DM, the Alpag._low-speed
DMS52-25. This DM will also function as the tip-tilt
corrector. The device has a working aperture 15 mm
and is coated with protected silver.

o
:~

»

L)

E' y
QR |
-

=

Sealolc

Figure 6. A) First 20 orthonormal tweeter modes as
viewed over the 9.8 mm working aperture of the
MEMS 1K DM. Mode 1 is shown in the upper left,
and the mode structure continues left to right, top to
bottom.

B) First 20 orthonormal woofer modes of the
woofer DM. Mode 1 is shown in the upper left. The
nodes of each mode trend to the perimeter as the
mode number increases leaving less correction over
the full pupil.

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, “Performance assessment of a candidate
architecture for real-time woofer-tweeter controllers: Simulation and experimental results,” SPIE Photonics West, 2013.

Dealing with the Woofer-Tweeter Pair

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

¢w($) - chibwi (33) ¢t(x) - thibti (x)

) 1

cw = M, / b (D)b(@)dx o = M, / bes (1)) da

Moy = U bi(:z:)bj(x)d:v]_l

w

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

Cw = My, / b, (T) Z ct; by, (x)dx
J

— MwatCt

where

Clot = / b, (2)br, (x)da

Woofer and Tweeter mode spaces
in matrix form

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as
Hilbert space matrices (avoiding integral signs)

M, = [BuBL]™" M;=[B.BI]”" Cut=By,Bl

and the phases themselves

pt(z) = B;TCt Pu(T) = Bgcw

Least-squares fits, projections, and cross
correlations

Least Squares Fits of Woofer to Tweeter Modes

M,Cy: = [B,BY] ™' B,BI = Bl BT
m,cT, = [B,BT] ™" B,BY = B}.BY

w

M.CT,M,C.: = B{ BB BT

Projection to woofer modes, followed by de-
projection back to tweeter, is kosher

M,CT, M, Cysc: = BIBTBY BT ¢,
N~

ot(x)
Then 1if
¢¢(T) = dw(x)

that 1s,

(which it is for the woofer-fittable part) then
M:CT,M,,Cyic: = Bi BLB! BLc,
g
C'Dw(l‘)
Since B, BT = I and B} BT = I this collapses to
M,CT M, Cypc; = BiBLc,, = BIBT ¢, = ¢,

which proves that the projection of woofer modes on the tweeter, followed by projecting
them back on to the tweeter again, is an i1dentity process - so long as the woofer modes
are in the tweeter Hilbert space.

...s0 long as the woofer modes are in the tweeter’s Hilbert space

Woofer-Tweeter controller

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

\) : Ct + (j Tweeter
—_— H / —_—

UL Vi
| MyCuwi > LPF > M,CL,
Cuw Woofer
)

-1 1_ 1
LPF= I‘IL(Z_1 :Z (a) /:—_1

1 —az1

The Woofer modes on the Tweeter are Low-Pass
Filtered — so we need a filter expressed in state space

The simplest filter 1s single-pole:
v = avp_y + (1 —a)up_y; ol <1

This has a z-transform transfer function

which has a pole at z = @. The magnitude of the transfer function vs real frequency 1s
shown in the figure, where we've substituted z = e = 27 fT

HL(Z) Im < R (a_l — 1) /T f

sl N

The whole woofer-tweeter control law written
in state-space form

We write the negative-feedback control loop in its state-space form:
v = avp_1 + (1 — a)up_1 = avp_1 — (1 — a')f\.fwathisk
= — Rs — A, M, CT v
at,. A, Sk ALY S b . |

Or, in matrix form:

B e N R O
L v J " _0 0 o J { v J 1 {(1 — a)]\JwC.thTJ

...and, with more matrix form manipulation...

which can be written in the form

ag ag —-R _Atl‘[tcz;t

Ay | = |Gy + — A, M,C,Hf 0 [‘sk]

v, v], —(1— a')A,{watHf —(1-a) Vk—1
R’ Sk

or

ap = ap—1 + R's;c

This boxed equation i1s what gets implemented in the c-extension module rtc2. We just
have to provide R’, which would be galculated in the support processing scripts, then
loaded using the supervisor module ptc.

This is all there is to it folks!

Stability Analysis
How the WES responds to DM changes:
sk = HAla,, | + HypAl ay, |

How the Woofer responds slower:
Aoy, = Py, + (1 — Bay,_,

This allows us to write the closed-loop matrix equation

[I 0 —AMCT, 0] [a AH] ay
w 0 I 0 0 w wiVl oy, Gy] w
Gw| _ “ _| AwMuCuH, : [HtAI 0 0 HwAL] ‘
v 0 0 o O | v (1 —a)MyCuiH; v
_&'w k 0 (1 - 8) 0 B C_I'I.LJ k—1 0 aw k—1
or
[ay { I — AH/H, Al 0 —AMCT —AHH, Al ag
aw| _ | —AuM,CyH]H A I 0 — Ay M, CyuH H, Al A
v J —(1 — a)M,CuH H AT 0 a —(1 = @)M,CyH] H, Al [v J
[G k 0 (1—-75) 0 I} Ay k—1
More compactly:
! /
a = Taj_,

Stability 1s assured if

INT)| < 1 Stable if all eigenvalues are inside unit circle

that is the eigenvalues of T are all inside the unit circle.

Stability can be enforced

Stability can be enforced if we do two things:

1) use a leaky integrator for the actuators, i.e. replace the I's in the first matrix
by I, where 0 < vy < 1.

2) multiply the reconstructor matrix by a feedback gain:
HY — gHT

where g 1s made sufficiently small. As g — 0 the eigenvalues of T' converge to three
degenerate eigenvalues, v, a, and [which are all less than 1 in magmtude. Therefore

there 1s a range of gains ¢ > 0 where the system is stable. The response time of the
system to mput disturbance is

Tr = —1/In | Apax|

where T 1s the sample period.

For Insight: Let’s Look at the Mode Coefficients

For further analysis it is instructive to note that only the mode sets selected by A;
and A,, are dynamically affected by feedback. The orthogonal parts of the Hilbert space
are 1 the null space of the reconstructor, so they are neither excited by the disurbance
nor fed back but are simply left to decay at a rate set by « without any affect on long-
term stability. If we carry just the selected mode coefficients in our analysis state-vector,

the stability equation is:

[¢t | Y- QHIHt

cw| | —gMuCuHH,

v | T | =(1 - a)gMwCuwH, H,
Cwlp | 0

0

v
0

(1-5)

M,C7
0

(83

0

—gHZHw
—gM,,CoeH H,,
—(1 — a)gMyCuwHTH,,
3

Feedback Dynamics of the mode coefficients

Mode Spaces Decouple...

We now make some reasonable approximations to help further simplify the analysis.
First, assume that the reconstructor obeys
HiH, ~ 1

Also, assume that the modes of the woofer match exacly a subset of modes of the tweeter,
and furthermore, that the modes in this set are orthonormal. Then

Cut = [In, 0] HH, ~ [Igw]

and
M, =1,, M; = 1I,,

where n,, 1s the number of controlled modes on the woofer and n; 1s the number of
controlled modes of the tweeter. Then the stability equation 1s

o " I L1171 - -

ct Y—g 0 0 91 o ct

“l =| gl 0] 4 0 g ||

- —(1—a)g[ln, 0] 0 a —(1-a)g| |,
S | 0 (1-58) 0 g FEEA

Mode Spaces Decouple
Into Shared and Tweeter-Only Modes

The dynamics separate into two independent subspaces, one associated with the modes
shared by woofer and tweeter, and ones associated with tweeter modes not being sent
to the woofer. That 1s

—Ctéw- | T—9 0 —1 —9 —Ctéw
w| _| =9 v 0 =g ||
v | -(1—a)g 0 a —(1—a)g)
| & |, L 0 (1—-5) 0 B]l Cw)
for the shared modes, and Sha rEd mOdes: 4-State

[Ctgéw]k — (’) - g) [Ctéw] k—1

for modes 1solated to the tweeter.

Tweeter-only modes: scalar-state

Simulation Results:
Everything is Stable and Behaves as Expected

tw (b), woof (g), err (r)

tw (b), woof (g), err (r)

1.2 12
08 0.8 Woofer 1 Rapid Sinusoid Disturbance
o 00l Tweeter
04 0.4 ‘

0.2 02|
I l\l N "
AU \‘ LA] l LA | | UL AL | ‘] |
L I H, ! H\ il il '1‘ I \N
~0.2 ' ~0.2} B
04, 50 100 150 200 04, 50 100 150 200

time, ms

Figure 1 A simulation of the ctec and ¢, states in response to disturbance of
a unit step plus sinusoid of magnitude 0.3 at 250 Hz. Left: with zero measurement
noise, right, with 0.07 rms measurement noise. The simulation parameters are
a=082=082,v=1,¢9=1.

RTC module

hn B~ W N =

RTC processing steps

Done in serial by the RTC engine (RTC2 module), written in C-language:

Map pixels to subaps (indirect map)
Centroid
Matrix-multiply

s; = Wp;; 1 € subaps

da = —aa+ ORs
Accumulate/Limit

Push to DM through indirect map

Coding takes advantage of BLAS routines (cblas_dgemv) to optimize/
parallelize linear algebra steps.

Timing tests show no need to overlap operations of multiple frame steps.
Gets done in under 660 us, even in 30X mode.

RTC processing code
17 lines of code...

This simulates one step of the real-time control loop, given the current parameters
def oneStep(self):

wfs camera (one would use i_map instead of u_map with the real interlaced camera data)
pix = (self,wfs[self,u_map] - self,wfs_background) * self,ufs_flat

centroider

wx = self,centllits[0,:]
wy = self,centlits[1,:]
wi = self,centlits[2,:]

for k in rangeiself,ns):

p = pix[k*25;(k+1)*25]

x = dot(p,wx)

y = dot{p,wy)

i = dot({p,wi) + 1,

self,s[k] = x/i

self,s[k+self.ns] = y/i
self,s[0:2*self ,ns] -= self,s_ref

reconstructor
self,da = dot(self,cm,self,s)

integrator
a = (self,a - self,a0)*self,integrator_bleeds + self,a0 + self.da
self,a = clipla,self,a_limit[0,:],self,a_limit[1,:])

self,buf[self,tueeter_map] = self,a[0:1024]
self woof = self,a[1024:1024+self ,na_woof]

...just kidding! This is the simulator in rtc.py.
But even it runs at ~ hundred hz!

Documentation

Documented Modules...

RTC2 — the rtc engine
RTC — the supervisor
File system

WES — definition of mode sets,
creation of reconstructor matrix

Indices and tables

Index

IDL scripts - paramgen.pro e
GUI - (nOt yet..) © Copyright 2013, Donakd Gavel. Created using Sphinx 1.2b1.

On-line Docs
(example of HTML Sphinx auto-docs)

& i previous | next | modules | index
Table Of Contents RTC
RTC
RTC class methods
RTC class data RTC class methods
RTC instance data

To Do class rte. xte(mode)
Previous topic RTC means “Real-Time Controller.”

Introduction

This class implements the python interface to the real-time engine.
The work flow logic:

initiakze the supervisor. - it reads in the parameters and puts the ric in go state, open loop

a call to open_loop saves the closed loop gain and opens the loop by setting the gain to zero
another call to open_loop while in the open state does not destroy the saved closed loop gain

a call 1o close_loop sets the koop gain 1o the saved gain. if this gain is not zero, the loop is closed
a call 1o set_gain closes the loop if the gain is non-zero

a call 10 set_gain with zero gain opens the loop, but it does not save the last gain

there is a default gain. restore it with a call to set_gain('default’).

the default gain is viewable as instance variable defaultGain

if you want to change the gain without closing the loop, modify savedGain

you can also modfy the defaultGain

manystep |NSTE0S)

Run the ric simulator many steps.
Enter search terms or a
module, class or function

] oneStep ()

The interface has its own RTC simulator. This method runs one step of it. This is handy for diagnostics as the ric engine should
produce results identical to the simulator.

ses s

Example start up and run code:
open_loop ()
u = rte('16x")
u.open_loop() Open the AO loop
u.set_gain(10.) # this als s the 1
u.set_gain(5.) # this can be done on the £ly

set_gain (gain)

Set the gain of the real-time controlier.
Example system modfication cycle:
status ()

Report the current AD control system state, including running state of the c-exension module, and the loop status and gain

"o
b
H
5
b
a
3
&
4

@
2
H
&
2
&
o
2
g
H
z
&
H
4
§

3
&
B
&
¥
o
4
a

stop ()
Stop the controller engine (computations halted)

RTC class data

I3
w
w
w.save()
lond the new parameters into rtc and go
u.load()
u.clese_loop()
close_loop ()

Close the AO loop

90

Start or resume the controller engine.

rta. pdictdx
rte. pdictléx

rte. pdiet30x

loadl) These are the dctionanes that map ric varnable names to their FITS files.

Load tells the interface to read the controller definition files, associated with self.mode, into the realtime controller c-
extension's memory.

RTC instance data
As a convenience, the definitions are also assigned 1o instance varniables within the ric object as well.
An ric contains instance vanables for every parameter that is loaded from FITS files, plus a few intemal ones of its own. Here are

many3tep (nSteps)
yetee some of the important ones:

Run the ric simulator many steps.

self. gain
The gain of the control loop. It multiples controlMatnx.

oneStep ()
The interface has its own RTC simulator. This method runs one step of it. This is handy for diagnostics as the ric engine should
produce results identical to the simulator.
self. controlMatrix
open_loop () The control matrix, as loaded from the FITS file.
Open the AO loop
self. em
set_gain (gain) The control matnix after it is multipled by the gain. This is loaded into ric2.
Set the cain of the real-time controller.

self. mode
The string ‘8x’, “16x’, or ‘30x' depending on the wavefront sensing mode.

self. loop
Loop state - either ‘open’ or ‘closed’

ShaneAO 1.0 documentation » previous | next | modules | index
© Copyright 2013, Donald Gavel. Created using Sphinx 1.2b1.

RTC System Status

Present Status:

Low, Mid, and Support: These are mostly done in Python and c-
extensions now, but some scripts still in IDL

No work has been done on the GUI
RTC?2 has all risks retired. Timing tests passed, up to 30x
Code maintenance and doc systems in place.

Surprises:

All VMMs test passed; exceed 1.5kHz frame rate
No kernel modules — no need for “RT” Linux

The 24 CPU machine 1s not the fastest we have (!) (i7s doing better
than Xeons)

BLAS doing 2-3x better than “hand coded.” Surprising trade of ||
processing and pipeline

“Bare minimum” RTC engine requirement

e WFS Cam readout

— 1kHz “frame rate”: 1 ms allocated roughly as follows

* 985 us expose
e 15 us frame transfer

— Camera collecting photons the majority of time (98.5% duty cycle)
* DM output

— Get this out by the time average data age = 1.5 ms

Camera Expose . Camera Expose .
‘ Framebuffer
readout

Camera Expose

Framebuffer
readout

Process Process
Data Data
Out to
DM
: : > Time

| |
Average data age

A

A 4

How to do wind-predictive control?

* 30x mode only?

* Wind measurement algorithm

— Probably implemented in supervisor, or separate thread
* not real-time critical

* uses telemetry data
— Decimate(?) Anti-alias filter(?) the raw data
* RT Wind-Blown wavefront predictor

— Load new matrices and proceed with VMM?
Or

— Code a Fourier version of the engine and “Fourier-shift”

