
ShaneAO	
Real-‐Time	 Control	

Donald	 Gavel	
Predic9ve	 Control	 Mee9ng	

May	 15,	 2013	
Revised:	 Oct	 24,	 2013	

Acknowledgements	

•  SPG	 SoHware	 Group	
–  Will	 Deich	
–  Kyle	 Lanclos	
–  Steve	 Allen	
–  John	 Gates	
–  Mark	 Reinig	

•  Graduate	 Students	
–  Andrew	 Norton	
–  Sri	 Srinath	

•  Helpful	 discussions	 with	
Don	 Wiberg,	 UCSC,	 Dave	 Palmer,	 LLNL,	 (GPI	 group),	 Christoph	 Baranec,	
Caltech,	 Reed	 Riddle,	 Caltech	 (ROBO-‐AO	 group)	

ShaneAO	 RTC	 -‐	 	 	

The ShaneAO AO control system is implemented in a hierarchy of support
software packages:	

	

•  Lowest level – fast computations – “bare minimum” data/parameter-driven

program	

•  Mid level – data and parameter maintenance (diagnostics, calibration,

parameter loading, operations modes)	

•  GUI level – user interface	

•  Support routines – generate parameters, do simulations and validations	

•  Code maintenance – cvs repository, Knowledge Tree documentation, on-

line documentation	

Requirements	 Defini9on	 Documents	
ShaneAO	 document	 server	 (KnowledgeTree)	 links	

•  RTC	 SoHware	 Defini9on	 Document	 011bu	
•  RTC	 Timing	 Requirements	 011bj	
•  RTC	 Data	 Requirements	 011bk	
	

RTC	 Hardware	

Hardware/RTC	 data	 flow	

WFS	 Cam	

TT	 Cam	

WFS	
Processor	

Woofer	 Mode	
Projector	

DM	 Volts	
Driver	

Tweeter	 DM	

Woofer	 DM	

Reconstructor	

Tip/Tilt	
Processor	

Woofer	
Driver	

PC	

Linux	 Box	

Detail:	 hardware	 pieces	 in	 the	 data	
flow	 paths	

WFS	
Processor	

Woofer	 Mode	
Projector	

DM	 Volts	
Driver	 Reconstructor	

Tip/Tilt	
Processor	

Woofer	
Driver	

PC	 Linux	 Box	

De
te
ct
or
	

He
ad
	

Sc
iM

ea
su
re
	

Co
nt
ro
lle
r	

WFS	 Cam	 “Big-‐Joe”	

ED
T	
8x
	

	 F
ra
m
e	

Gr
ab
be

r	

ED
T	
4x
	

	 F
ra
m
e	

Gr
ab
be

r	

De
te
ct
or
	

He
ad
	

Sc
iM

ea
su
re
	

Co
nt
ro
lle
r	

TT	 Cam	 “Lil-‐Joe”	

Tweeter	 DM	

Woofer	 DM	

BM
C	

M
irr
or
	

AL
PA

O
	

M
irr
or
	

Ca
m
br
id
ge
	

In
no

va
<o

n	
D/
A-‐
Am

pl
ifi
er
	

VM
et
ro
	

	 D
PI
O
2	

Di
g	
I/
O
	

AD
Li
nk
	

Di
g	
I/
O
	

AL
PA

O
	

Dr
iv
er
	

ShaneAO	 allows	 for	 3	 WFS	 architectures:	
8x,	 16x,	 30x	

	 	 	 	

	 	 	 	

Woofer-‐Tweeter	

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, 	

and Daren Dillon, “Performance assessment of a candidate architecture for real-time woofer-tweeter controllers: Simulation and
experimental results,” SPIE Photonics West, 2013.	

	

RTC	 SoHware	

Modules…	

•  RTC2 – the rtc engine, written in C, dynamically linked to RTC!
•  RTC – the supervisor, written in Python	

•  File System	

•  WFS – definition of mode sets, creation of reconstructor matrix	

•  IDL scripts - paramgen.pro!
•  GUI	

Parameter	 Prepara9on	 and	 Handling	

•  “Parameters” (matrix, offsets, and
limits,…) are prepared outside the
RTC.	

•  All calibration operations (flat,
dark, refcent…) are done outside
the RTC	

•  Parameters stored in FITS files	

•  Parameters loaded through the

Python-C extension	

•  Python-C extension “peeks” at

the RTC data via pointers, and
displays diagnostics as you like	

RTC	 python	
module	

(supervisor)	

RTC2	 c-‐
extension	
module	
(engine)	

FITS	 files	

rtc2.load	

rtc2.peek	

Preparing	 the	 Reconstructor	

A	 Mathema9cal	 Framework	 for	 the	
Reconstructor	 	

•  Assume the wavefront is “fittable” by a set of modes	

	

•  {ci,bi(x)} is any vector space. These “internal” modes (basis functions
bi(x)) don’t have to be orthonormal, can mix pieces of mode sets (Zernike,
Fourier, DM modes, etc.). Solution is restricted to Hilbert subspace
spanned by the basis functions	

•  The Shack-Hartmann wavefront sensor responds to the wavefront as	

•  And thus is related to the mode coefficients as	

•  Finally, we assume that the deformable mirrors can produce the mode set,
with some fitting error, where ri(x) are actuator influence functions	

•  The actuator command vector is related to the mode coefficients by	

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT)�1HT

s = Hc

a = Ac

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x)

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc+ e

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc+ es

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx+ nj ; i 2 {subaps}

s = Hc+ es

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

Internal	 Mode	 Space	 Formula9on	 is	 General	

•  Fourier reconstructor is in this formulation:	

–  	
 Fourier-equivalent matrix form:	

–  	
 Fourier “reconstructor” is (mathematically)	

	
subsumed in the internal mode space concept	

–  	
 Modal weights are also subsumed	

–  	
 -> An alternative implementation is needed to get at signals in Fourier

space	

•  Poke-matrix reconstructor is in this formulation. 	

–  The basis set can be the actuator influence functions (c=a; A=I, and H =
the familiar “poke” matrix). Not recommended for ShaneAO 8x and
16x modes.	

•  Zernike mode reconstructors are in this formulation	

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0

s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0

s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0

s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Genera9ng	 the	 Reconstruc9on	 Matrix	

•  The reconstructor strives to find the mode coefficients given the sensor
readings, then set the actuators accordingly	

•  Regularized pseudo-inverse of H (Waffle Suppression, Minimum Variance
Estimation)	

•  Only R is used by the rtc (#3 on viewgraph 19)	

•  Matrix sub-blocks are used to incorporate woofer mode de-projection and

filtering…	

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

�b(x) =
X

i

cibi(x)

�b(x) =
X

i

airi(x) + efit

e� = �(x)� �b(x)

R = AH†

H† = (Q+HPHT)�1HT

sj =

Z
wj(x)r�(x)dx; i 2 {subaps}

s = Hc+ es

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
e

ikx
⇤

1

ShaneAO	 DMs	 Mode	 Spaces	

Andrew Norton, Don Gavel, Renate Kupke, Marco Reinig, Srikar Srinath, and Daren Dillon, “Performance assessment of a candidate
architecture for real-time woofer-tweeter controllers: Simulation and experimental results,” SPIE Photonics West, 2013.	

	

Dealing	 with	 the	 Woofer-‐Tweeter	 Pair	
Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

Woofer	 and	 Tweeter	 mode	 spaces	
	 in	 matrix	 form	

Least-‐squares	 fits,	 projec9ons,	 and	 cross	
correla9ons	

Projec9on	 to	 woofer	 modes,	 followed	 by	 de-‐
projec9on	 back	 to	 tweeter,	 is	 kosher	

…so	 long	 as	 the	 woofer	 modes	 are	 in	 the	 tweeter’s	 Hilbert	 space	

Woofer-‐Tweeter	 controller	

LPF	

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

which can be written in the form

2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0

s
k

v
k�1

�

or

a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Tweeter	

which can be written in the form

2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0

s
k

v
k�1

�

or

a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Woofer	

-‐	

+	 s	

LPF	 =	

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

t

c
t| {z }

�t(x)

Then if
�
t

(x) = �
w

(x)

that is,
BT

t

c
t

= BT

w

c
w

(which it is for the woofer-fittable part) then

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

w

c
w| {z }

�w(x)

Since B†
w

BT

w

= I and B†
t

BT

t

= I this collapses to

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

c
w

= B†
t

BT

t

c
t

= c
t

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

[Control Loop Figure goes here] Z
= 1 + z�1

The simplest filter is single-pole:

v
k

= ↵v
k�1 + (1� ↵)u

k

; |↵| < 1

This has a z-transform transfer function

H
L

(z�1) =
1� ↵

1� ↵z�1

so there is a pole at z = ↵ and a zero at z = 0. The magnitude of the transfer function vs real frequency is
shown in the figure, where we’ve substituted z = esT = ei2⇡fT

We write the control loop diagram in its state-space form:

v
k

= ↵v
k�1 + (1� ↵)u

k

= ↵v
k

+ (1� ↵)M
w

C
wt

Rs
k

a
tk = a

tk�1 +Rs
k

�M
t

CT

wt

v
k

a
wk = a

wk�1 +M
w

C
wt

Rs
k

2

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

t

c
t| {z }

�t(x)

Then if
�
t

(x) = �
w

(x)

that is,
BT

t

c
t

= BT

w

c
w

(which it is for the woofer-fittable part) then

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

w

c
w| {z }

�w(x)

Since B†
w

BT

w

= I and B†
t

BT

t

= I this collapses to

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

c
w

= B†
t

BT

t

c
t

= c
t

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

[Control Loop Figure goes here] Z
= 1 + z�1

The simplest filter is single-pole:

v
k

= ↵v
k�1 + (1� ↵)u

k

; |↵| < 1

This has a z-transform transfer function

H
L

(z�1) =
1� ↵

1� ↵z�1

so there is a pole at z = ↵ and a zero at z = 0. The magnitude of the transfer function vs real frequency is
shown in the figure, where we’ve substituted z = esT = ei2⇡fT

We write the control loop diagram in its state-space form:

v
k

= ↵v
k�1 + (1� ↵)u

k

= ↵v
k

+ (1� ↵)M
w

C
wt

Rs
k

a
tk = a

tk�1 +Rs
k

�M
t

CT

wt

v
k

a
wk = a

wk�1 +M
w

C
wt

Rs
k

2

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

t

c
t| {z }

�t(x)

Then if
�
t

(x) = �
w

(x)

that is,
BT

t

c
t

= BT

w

c
w

(which it is for the woofer-fittable part) then

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

B†
w

BT

w

c
w| {z }

�w(x)

Since B†
w

BT

w

= I and B†
t

BT

t

= I this collapses to

M
t

CT

wt

M
w

C
wt

c
t

= B†
t

BT

w

c
w

= B†
t

BT

t

c
t

= c
t

which proves that the projection of woofer modes on the tweeter, followed by projecting them back on to
the tweeter again, is an identity process - so long as the woofer modes are in the tweeter Hilbert space.

With this in mind, we build up a (conceptual) control flow diagram, where the control is split between
woofer and tweeter using projections from tweeter space to woofer space. We don’t exactly remove the
woofer modes from the tweeter, instead we remove them only after low-pass filtering, because the woofer
takes some time to respond.

[Control Loop Figure goes here] Z
= 1 + z�1

The simplest filter is single-pole:

v
k

= ↵v
k�1 + (1� ↵)u

k

; |↵| < 1

This has a z-transform transfer function

H
L

(z�1) =
1� ↵

1� ↵z�1

so there is a pole at z = ↵ and a zero at z = 0. The magnitude of the transfer function vs real frequency is
shown in the figure, where we’ve substituted z = esT = ei2⇡fT

We write the control loop diagram in its state-space form:

v
k

= ↵v
k�1 + (1� ↵)u

k

= ↵v
k

+ (1� ↵)M
w

C
wt

Rs
k

a
tk = a

tk�1 +Rs
k

�M
t

CT

wt

v
k

a
wk = a

wk�1 +M
w

C
wt

Rs
k

2

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 s
k

which can be written in the form
2

4
a
t

a
w

v

3

5

k

=

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R �M

t

CT

wt

M
w

C
wt

R 0
(1� ↵)M

w

C
wt

R ↵� 1

3

5

| {z }
R

0

s
k

v
k�1

�

or
a
k

= a
k�1 +R0s0

k

This boxed equation is what gets implemented in the c-extension module rtc2. We just have to provide R0,
which would be calculated in the support processing scripts, then loaded using the supervisor module rtc.

�
b

(x) =
X

i

a
i

r
i

(x) + e
fit

e
�

= �(x)� �
b

(x)

R = AH†

H† = (Q+HPHT)�1HT

s
j

=

Z
w

j

(x)r�(x)dx+ n
j

; i 2 {subaps}

s = Hc+ e
s

a = Ac

s = F [ik] �̃ = Hc

a = F�̃ = Ac

F =
⇥
eikx

⇤

Stability To analyze stability, we need to understand the plant, that is, the system measurements s
k

in response to driving the input, a
k

. We can say that

s
k

= HA†(a
tk�1 + a

wk�1)

where we’ve used the fact that A† = (ATA)�1AT so A†A = I and s = Hc = HA†a. This allows us to write
the closed-loop matrix equation

2

4
a
t

a
w

v

3

5

k

=

2

4
I 0 �M

t

CT

wt

0 I 0
0 0 ↵

3

5

2

4
a
t

a
w

v

3

5

k�1

+

2

4
R

M
w

C
wt

R
(1� ↵)M

w

C
wt

R

3

5 [HA† HA† 0]

2

4
a
t

a
w

v

3

5

k�1

3

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

Woofer and Tweeter Mode Spaces

The woofer and tweeter respond to linear combinations of their mode sets according to

�
w

(x) =
X

i

c
wibwi(x) �

t

(x) =
X

i

c
tibti(x)

c
w

= M
w

Z
b
wi(x)�(x)dx c

t

= M
t

Z
b
ti

(x)�(x)dx

M[t
w]

=

Z
b
i

(x)b
j

(x)dx

��1

If the tweeter has an arbitrary phase, within its Hilbert supspace, then it can be projected to the woofer:

c
w

= M
w

Z
b
wi(x)

X

j

c
tj btj (x)dx

= M
w

C
wt

c
t

where

C
wt

=

Z
b
wi(x)btj (x)dx

Hilbert Matrices

We have various quantities that can be more compactly and simply expressed as Hilbert space matrices
(avoiding integral signs)

M
w

=
⇥
B

w

BT

w

⇤�1
M

t

=
⇥
B

t

BT

t

⇤�1
C

wt

= B
w

BT

t

B
t

=

2

4
b
t0(x)
b
t1(x)
...

3

5

M
w

=
⇥
B

t

BT

t

⇤�1
M

t

=
⇥
B

w

BT

w

⇤�1

C
wt

= B
w

BT

t

and the phases themselves

�
t

(x) = BT

t

c
t

�
w

(x) = BT

w

c
w

Least Squares Fits of Woofer to Tweeter Modes

M
w

C
wt

=
⇥
B

w

BT

w

⇤�1
B

w

BT

t

= B†
w

BT

t

M
t

CT

wt

=
⇥
B

t

BT

t

⇤�1
B

t

BT

w

= B†
t

Bt

w

M
t

CT

wt

M
w

C
wt

= B†
t

BT

w

B†
w

BT

t

1

The	 Woofer	 modes	 on	 the	 Tweeter	 are	 Low-‐Pass	
Filtered	 –	 so	 we	 need	 a	 filter	 expressed	 in	 state	 space	

x	

1	 f	

Re z	

Im z	

HL(z)	

The	 whole	 woofer-‐tweeter	 control	 law	 wrijen	
in	 state-‐space	 form	

Or, in matrix form:	

…and,	 with	 more	 matrix	 form	 manipula9on…	

This	 is	 all	 there	 is	 to	 it	 folks!	

Stability	 Analysis	
How	 the	 WFS	 responds	 to	 DM	 changes:	
	

How	 the	 Woofer	 responds	 slower:	
	

Stable	 if	 all	 eigenvalues	 are	 inside	 unit	 circle	

Stability	 can	 be	 enforced	

For	 Insight:	 Let’s	 Look	 at	 the	 Mode	 Coefficients	

Feedback	 Dynamics	 of	 the	 mode	 coefficients	

Mode	 Spaces	 Decouple…	

Mode	 Spaces	 Decouple	
Into	 Shared	 and	 Tweeter-‐Only	 Modes	

Shared	 modes:	 4-‐state	

Tweeter-‐only	 modes:	 scalar-‐state	

Simula9on	 Results:	
Everything	 is	 Stable	 and	 Behaves	 as	 Expected	

Coupled	 Woofer-‐Tweeter	
Mode	 with	 a	 Step	 Func9on	 +	
Rapid	 Sinusoid	 Disturbance	 Woofer	

Tweeter	

Residual	

RTC	 module	

RTC	 processing	 steps	

•  Done in serial by the RTC engine (RTC2 module), written in C-language:	

	

1.  Map pixels to subaps (indirect map)	

2.  Centroid	

3.  Matrix-multiply	

4.  Accumulate/Limit	

5.  Push to DM through indirect map	

	

•  Coding takes advantage of BLAS routines (cblas_dgemv) to optimize/

parallelize linear algebra steps.	

•  Timing tests show no need to overlap operations of multiple frame steps.

Gets done in under 660 us, even in 30x mode.	

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT)�1HT

1

si = Wpi; i 2 subaps

@a = �↵a+ �Rs

R = AH†

H† = (Q+HPHT)�1HT

1

RTC	 processing	 code	
17	 lines	 of	 code…	

…just	 kidding!	 This	 	 is	 the	 simulator	 in	 rtc.py.	 	
But	 even	 it	 runs	 at	 ~	 hundred	 hz!	

Documenta9on	

Documented	 Modules…	

•  RTC2 – the rtc engine	

•  RTC – the supervisor	

•  File system	

•  WFS – definition of mode sets,

creation of reconstructor matrix	

•  IDL scripts - paramgen.pro	

•  GUI – (not yet..)	

On-‐line	 Docs	
(example	 of	 HTML	 Sphinx	 auto-‐docs)	 	

RTC	 System	 Status	

Present Status:	

•  Low, Mid, and Support: These are mostly done in Python and c-

extensions now, but some scripts still in IDL	

•  No work has been done on the GUI	

•  RTC2 has all risks retired. Timing tests passed, up to 30x	

•  Code maintenance and doc systems in place.	

	

Surprises:	

•  All VMMs test passed; exceed 1.5kHz frame rate	

•  No kernel modules – no need for “RT” Linux	

•  The 24 CPU machine is not the fastest we have (!) (i7s doing better

than Xeons)	

•  BLAS doing 2-3x better than “hand coded.” Surprising trade of ||

processing and pipeline	

“Bare	 minimum”	 RTC	 engine	 requirement	
•  WFS	 Cam	 readout	

–  1kHz	 “frame	 rate”:	 1	 ms	 allocated	 roughly	 as	 follows	
•  985	 us	 expose	
•  15	 us	 frame	 transfer	

–  Camera	 collec9ng	 photons	 the	 majority	 of	 9me	 (98.5%	 duty	 cycle)	

•  DM	 output	
–  Get	 this	 out	 by	 the	 9me	 average	 data	 age	 =	 1.5	 ms	

Camera	 Expose	

Time	

Camera	 Expose	 Camera	 Expose	

Framebuffer	
readout	

Framebuffer	
readout	

Process	
Data	

Process	
Data	

Out	 to	
DM	

Average	 data	 age	

How	 to	 do	 wind-‐predic9ve	 control?	

•  30x mode only?	

•  Wind measurement algorithm	

–  Probably implemented in supervisor, or separate thread	

•  not real-time critical	

•  uses telemetry data	

–  Decimate(?) Anti-alias filter(?) the raw data	

•  RT Wind-Blown wavefront predictor	

–  Load new matrices and proceed with VMM?	

	
Or	

–  Code a Fourier version of the engine and “Fourier-shift”	

