

International collaboration to develop Optically-Pumped Solid-state Laser (OPSL) for LGS AO applications

Céline d'Orgeville^a, Greg Fetzer^b

^a Australian National University, Canberra, ACT, Australia ^bArete Associates, Longmont, Colorado, USA

Outline

- Sodium laser state of the art and rationale to develop the next generation source
- Guidestar OPSL R&D state of the art
- International collaboration
 - NSF ATI proposal (submitted 3 Nov. 2014)
 - ARC LIEF proposal (to be submitted April 2015)
 - Prospective Partners in Astronomy and Satellite/
 Space Debris Tracking applications

Sodium Lasers in *Routine*Operation at Astronomical and Tracking Telescopes

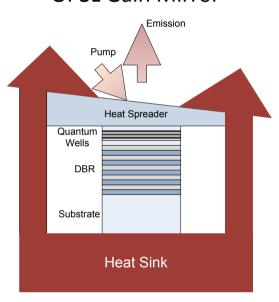
- Old generation (~2000-2014)
 - Dye lasers (already or soon to be decommissioned e.g. ESO VLT, Keck II)
 - Solid-state lasers (in operation e.g. Starfire Optical Range, Subaru, Gemini North, Keck I, Gemini South)
- Current generation (~2014+)
 - Fiber-based lasers (being, or to be, commissioned soon e.g. ESO VLT, Keck II, Stromlo)

Sodium Laser State of the

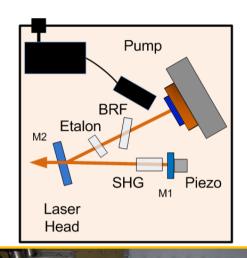
Art: Toptica SodiumStar¹

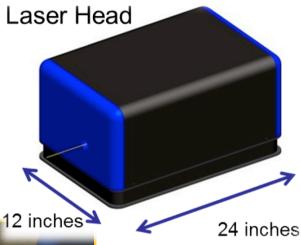
- Specifications²:
 - 589nm CW, 20W at Na D2a + 2W at Na D2b (re-pumping), 5MHz linewidth, near diffraction-limited
 - Laser head can be mounted on telescope, no further than 30m from electronics cabinet
- Only fully-engineered, commercially available source for the foreseeable future...with very high availability risk:
 - Production line will stop shortly after 5 first units (4 ESO + Keck II lasers) are/ have been delivered these days
 - Budget and schedule programmatic risks inherent to sole-source supplier e.g.
 - The need to resurrect the production line will add to future unit cost
 - Service agreements may not be enough to maintain company interest in this line of business for years to come
- Still relatively large (90x70x40cm³ head + 90x91x173 cabinet) and demanding system (e.g. heat exchangers)
- Too expensive (<u>>\$1M</u>)³ for most would-be sodium LGS AO users/upgrades

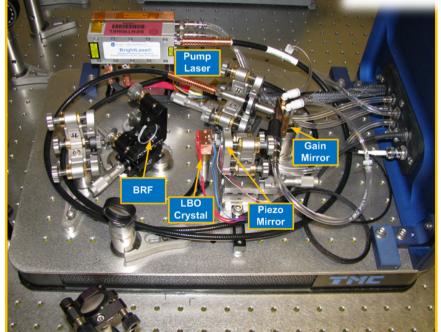
Next Generation Sodium Laser Source


- ANU and Arete Associates propose to demonstrate a guidestar OPSL for LGS AO applications in Astronomy and Satellite/Space Debris Tracking applications
 - Arete Associates-led NSF Advanced Technologies and Instrumentation (ATI) proposal submitted Nov 3, 2014
 - ANU-led ARC Linkage Infrastructure, Equipment and Facilities (LIEF) proposal to be submitted in April 2015
- If proposed development successful, opens route to alternative, competitive, commercial sodium laser source option
 - Same performance specifications as Toptica SodiumStar
 - Lower complexity (no seed laser, no extra resonant doubling cavity and associated control electronics)
 - Smaller package (shoe-box size laser head)
 - Higher efficiency (less cooling)
 - Cheaper price (factor 2 or more cheaper than Toptica SodiumStar)

Laboratory 589 nm OPSL

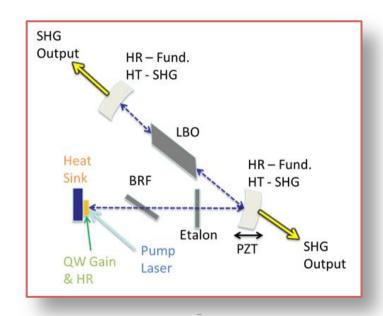


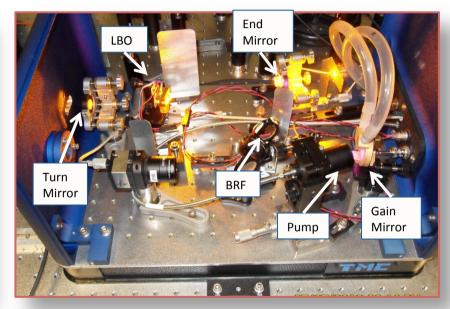

OPSL Gain Mirror

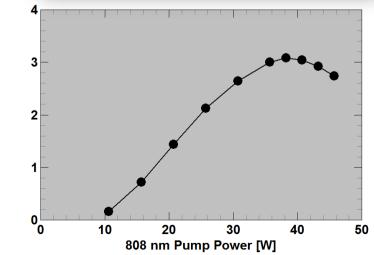


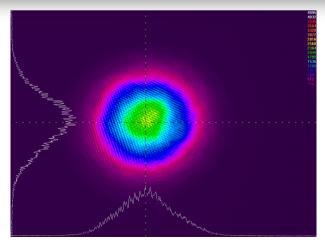
System produced in 2009-2012 under SBIR funding from NSF

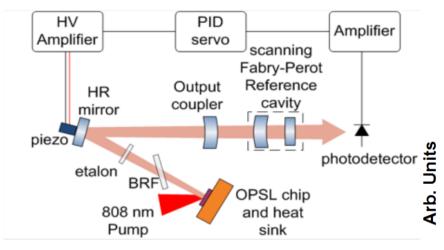
Details reported at CfAO in 2012



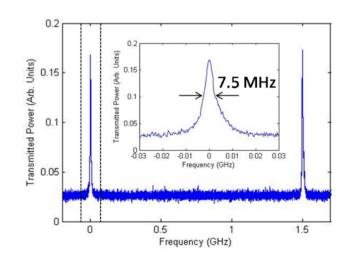


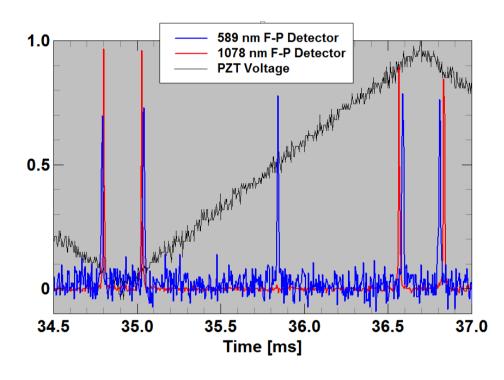



589 nm Single Frequency OPSL

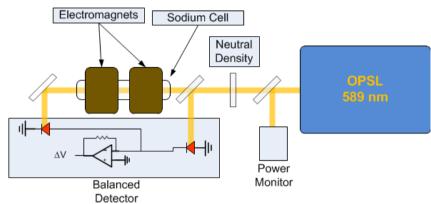


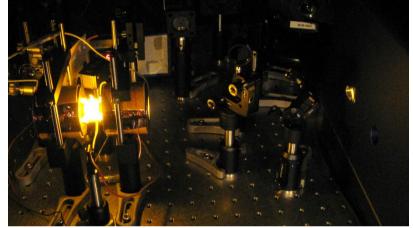
589 nm Output Power [W]

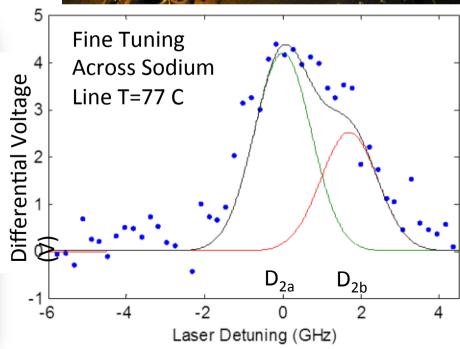


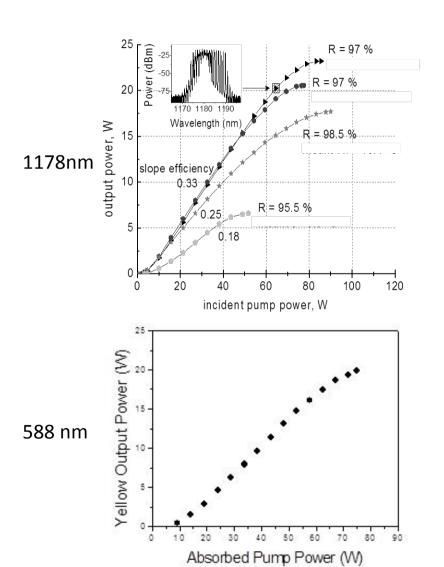

Spectral Linewidth

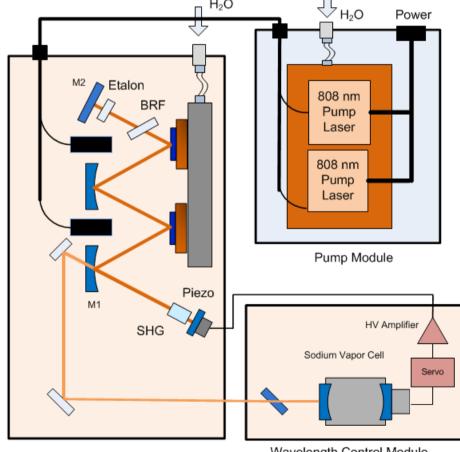
1178nm Linewidth Estimate






Tunability





Power Scaling

Multiple Gain Mirrors Can Be Used to Further Scale Power _∏ H₂O

Wavelength Control Module

D_{2a} and D_{2b}

Multiple approaches to generating both wavelengths

- Polarization beam combining
- Sideband generation using EOM
- Coherent beam combining

NSF ATI Proposal

- Scope Develop a 589 nm single frequency, high power OPSL and demonstrate it on-sky at the Kuiper telescope near Tucson, AZ
- Schedule 3 Year Program
- Budget ~\$1.3M
- NSF ATI proposal
- Submitted Nov 3, 2014

NSF ATI Program Objectives and Team

Objectives

- Develop OPSL design for operation on the Kuiper telescope at the Steward Observatory on Mt. Bigelow near Tucson, Arizona
- Build laser guide star system brassboard
- Characterize and optimize laser performance with respect to sodium returns.
- Transition guide star laser system to Steward Observatory

Team			
Organization	PI	Role	Location
Areté Associates	Dr. G. J. Fetzer	Laser Development	Longmont, CO
Steward Observatory	Dr. M. Hart	Beam Delivery Optics Telescope Installation On Sky Demonstration	Kuiper 61" Telescope Tucson, AZ
Australian National University	Ms. C. D'Orgeville	Guide Star Laser Expertise Program Oversight	Canberra, AU

NSF ATI Program Plan

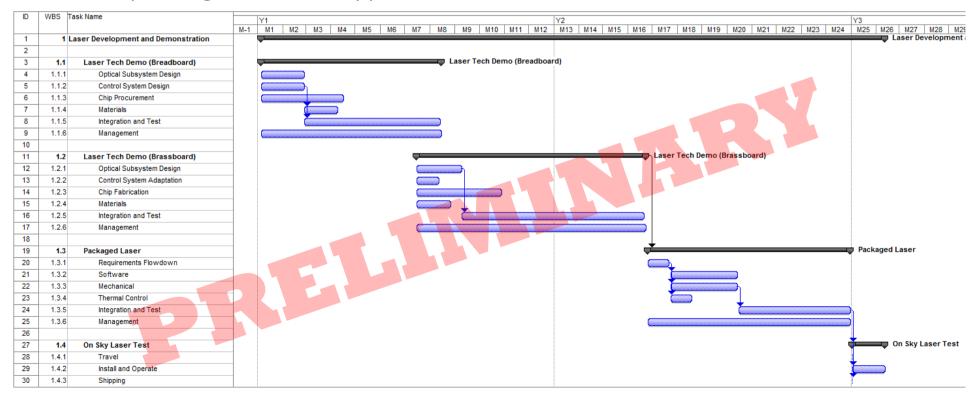
ARC LIEF Proposal

DISCLAIMER: The material contained herein is only <u>preliminary</u> and the ARC LIEF proposal will evolve depending on eventual partner interest and contribution levels...

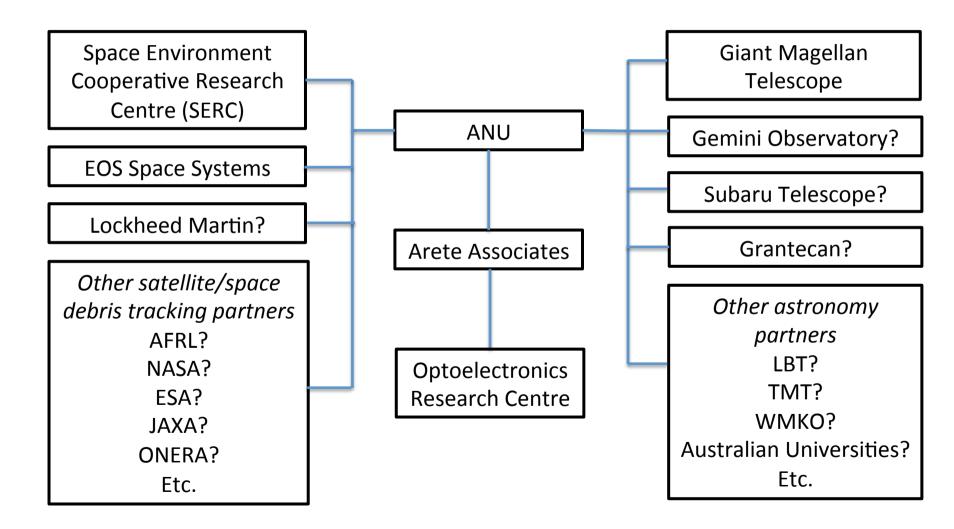
ARC LIEF Project: Technical Objectives

- Laser system architecture
 - 1178nm OPSL with intra-cavity doubling to produce 589nm
 - Single-frequency operation, locked to sodium D2a line
 - D2b repumping [optional depending on final budget]
- Laboratory demonstrations
 - ✓ High power, broadband operation^{4, 5}
 - ✓ Low power, single frequency operation^{6, 7}
 - ☐ High power, single frequency operation
 - ☐ Guidestar OPSL prototype performing at specifications
- On-sky demonstrations [either or both depending on partners]
 - ☐ At partner astronomical telescope
 - ☐ At partner satellite/space debris laser tracking station

ARC LIEF Project: Schedule & Budget


- 3-year program with early/mid 2016 start
 - Year 1: Laboratory demonstrations
 - Year 2: Prototype development
 - Year 3: On-sky demonstration
- Total funding ~\$2M (AUD) including:
 - ~\$1.2M to be requested from ARC over 3 years
 - ~\$500k to be provided by ANU over 3 years
 - LIEF requires that partner cash contribution be >25% of requested ARC funds
 - ANU typically supports 25% of ANU-led ARC LIEF bids
 - Remaining ~\$300k to be provided by ANU and other Partners (cash and/or in-kind) over 3 years

ARC LIEF Project: Work Plan


- ANU: Project management; system engineering; laser system packaging; controls; assembly; laboratory and on-site testing
- Arete Associates: Laser head development
- Other partners: User requirements; on-site testing; other contributions depending on interest/opportunities

ARC LIEF Proposal: Partner Organizations

ARC LIEF Proposal: Important Dates

2014

➤ November/December: Build partnership

2015

- ➤ January/February: Finalize project scope and budget based on partner cash and in-kind contributions
- > February/March: Write proposal
- April: Submit proposal
- October-November: Award announcements

2016

➤ January + 3-6 months: Project start (once partner agreements are signed)

Guidestar OPSL: Future Plans

- If prototype demonstration successful, plan is to seek additional funding to develop commercial product in Years 4-5
 - IP generated by ARC LIEF will be shared with contributing Partners
 - Commercialisation avenue discussion already initiated
- Guidestar OPSL R&D overall program will be updated depending on success of NSF ATI and ARC LIEF proposals
 - ARC LIEF project scope independent of NSF ATI proposal outcome
 - Scope may increase if both proposals receive funding
- Future research avenues:
 - Increase output power
 - Coherently combine multiple 589nm beams using optical phased array technique being developed by ANU and EOS under existing, on-going ARC Linkage Project

References

- [1] http://www.toptica.com/products/research_grade_diode_lasers/frequency_converted_diode_lasers/ sodiumstar high power guide star laser.html
- [2] http://www.toptica.com/uploads/media/toptica_BR_SodiumStar20-2.pdf
- [3] http://www.toptica.com/uploads/media/100624 PR ESO TOPTICA Contract 01.pdf
- [4] S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer and M. Guina, 1180 nm VECSEL with output power beyond 20 W, Electronics Letters, Vol. 49, No. 1 (2013)
- [5] T. Leinonen, S. Ranta, M. Tavast, R. Epstein, G. Fetzer, Sandalphon, N. Van Lieu, and M. Guina, *High Power (23 W) Vertical External-Cavity Surface-Emitting Laser emitting at 1180 nm*, Vertical External Cavity Surface Emitting Lasers (VECSELs) III, edited by Jennifer E. Hastie, Proc. of SPIE Vol. 8606, 860604 (2013)
- [6] William J. Alford, Gregory J. Fetzer, Ryan J. Epstein, Sandalphon, Neil Van Lieu, Sanna Ranta, Miki Tavast, Tomi Leinonen, and Mircea Guina, *Optically Pumped Semiconductor Lasers for Precision Spectroscopic Applications*, IEEE Journal of Quantum Electronics, Vol. 49, No. 8 (2013)
- [7] Tomi Leinonen, Antti Härkönen, Ville-Markus Korpijärvi, Mircea Guina, Ryan J. Epstein, James T. Murray, and Gregory J. Fetzer, *High-power narrow-linewidth optically pumped dilute nitride disk laser with emission at 589 nm*, Semiconductor Lasers and Laser Dynamics IV, edited by Krassimir Panajotov, Marc Sciamanna, Angel A. Valle, Rainer Michalzik, Proc. of SPIE Vol. 7720, 772016 (2010)