

Micromirror arrays for light field manipulations

Roland Ryf (ryf@lucent.com)

Advanced Photonics Research

Bell Laboratories, Lucent Technologies

Contents

- Capabilities
- low fill factor two tilt axes arrays
 - -beam steering
- Spatial Light Modulator will large tilt capability (CCIT)
 - -beam steering
 - -programmable optical element
 - -phase front manipulation
 - -tracking
- High resolution pure phase SLM

CfAO Workshop August 19th, 2004

Lucent Technologies

Bell Labs Innovations

NJNC - Bell Labs: Unique capabilities in MEMS/NEMS

Lucent Technologies Bell Labs Innovations

Advanced Photonics Research

- Number of devices on a single die: one device to 10 million
- Types of motion: piston (0-5 microns) and/or tip-tilt (+/- 20°)
- Speeds: 1 microsecond to 10 milliseconds
- Sizes: 1-1000 microns in diameter
- Drive electronics: integrated or discrete
- Mirror flatness: less than 5 nm
- Metals: Aluminum or Gold
- Drive voltages: 1-100 volts
- Optical Power: 2-10 watts per pixel
- Vibration: NEBS zone four earthquake compliant (most rigorous NEBS spec)
- Power dissipation: less than a nanowatt per mirror
- Packages: hermetic or free space, optical windows available
- World class design, processing and packaging teams are "in house"
- Time to deliver a custom packaged design: three to six months
- Design team experience: Designed and delivered industry leading LambdaRouter optical switch-Only MEMS switch currently in commercial service.

Some Sample Devices

Advanced Photonics Research

CfAO Workshop August 19th, 2004

Lucent Technologies Bell Labs Innovations

More MicroMirror linear arrays

Advanced Photonics Research

Beam steering arrays with 1296 mirrors

Zero voltage

Voltage-actuated mirror deflection

Advanced Photonics Research

CfAO Workshop August 19th, 2004

Lucent Technologies

Bell Labs Innovations

2-Axis Tilt Micro-Mirrors for beam steering

CfAO Workshop August 19th, 2004

Lucent Technologies Bell Labs Innovations

CCIT: Overall SLM Goals

- 2D Array with 256x256 tip-tilt-piston pixels (for base program)
- Individual pixel characteristics
 - Fill factor 98%
 - Response time 10 µs
 - Flatness $\lambda/50$
 - Roughness 2nm
 - Piston range on the order 5µm
 - Tip-tilt range +/- 10°
 - 8-bit resolution for tip-tilt and piston
- Integrated electronics addressing each pixel

Advanced Photonics Research

Independent control of tilt and piston motion enables microlens formation

Advanced Photonics Research

SLM Inside Telescope

The image is the convolution of the object with the diffraction pattern of the SLM

SLM Diffraction Pattern

If the detector camera has a higher resolution than the SLM, side peak produced by SLM matrix must be kept low.

Advanced Photonics Research

Origin of the SLM Diffraction Pattern

1. Gap between the mirrors

 Δd : Gap d : Mirror spacing

Advanced Photonics Research

Origin of the SLM diffraction pattern

2. Phase jumps at mirror boundary when mirrors are actuated

Original 1024x1024 pixels

Zoomed Detail (256x256)

Phase distortion (1024x1024)

Simulation: Grid: 1024x1024 Mirrors: 128x128 Coherence length r_a =32 pixels \Leftrightarrow 4 Mirrors

Advanced Photonics Research

HR0011-04-C0048 Examples of Corrected Images After Phase Distortion Corrected (Phase Jumps Only)

DARD

Corrected - 90% fill factor

Corrected- 98% fill factor

Corrected: Yield 90%

Advanced Photonics Research

CfAO Workshop August 19th, 2004

Lucent Technologies Bell Labs Innovations

HR0011-04-C0048

Examples of Corrected Images--II

Original

Corrected- μ mirror curvature λ /20

Corrected- μ mirror curvature λ /50

Advanced Photonics Research

Small pixel size piston only SLM

SLM for Maskless Lithography, enabling:

- Sub 50nm CD
- One 300mm wafer level per hour

MEMS SLM Technical Goals:

- 1. Pixel count > 10Milion
- 2. Pixel size < 3 μ m
- 3. Fill factor >93%, reflectivity >90%
- 4. Piston stroke >70 nm
- 5. Efficient modulation @193nm and 157nm
- 6. Frame rate 10kHz
- 7. Si based actuators, integrated electronics

Lucent Technologies

Bell Labs Innovations

- Lucent has experience with large micromirror arrays based on the Lambda Router project
- SLM with tip-tilt-piston motion offers unmatched capabilities for adaptive optics and beam steering
- Piston only mirror array can address high resolution needs

Lucent Technologies

Bell Labs Innovations