

Deformable Mirrors for TMT

Jerry Nelson, Don Gavel

Outline

- **TMT Adaptive Optics Systems Concepts**
- **MEMS vs conventional DMs**
- **Deriving MEMS requirements**
- **MEMS requirements for particular sub systems**

TMT Adaptive Optics Instruments

- **Diffraction-limited imaging spectrometer** $\lambda = 1.5 \mu m$
	- Diffraction-limited $(\sim 7-14 \text{ mas})$
	- 10 arcsec field
- **Near-infrared wide field spectrometer** $\lambda = 1.5 \mu m$
	- Multiple Integral Field Units
		- Multiple 2 arcsecond fields, R=5000
		- 50 milli-arcsecond slit
	- 5 arcminute field of regard
- **Mid-IR spectrometer** $\lambda = 5-28\mu$ m
- **Multi-conjugate adaptive optics moderate field imager** λ**=1-2.5µm**
	- Diffraction-limited
	- 30 arcsec field
- **Extra-solar planet imager (ExAO)** λ **= 1-2.5µm**
	- $-$ ~1 arcsec field
	- $-50-100K$? Actuators (>10⁸ contrast)

Other possible MEMS applications in TMT AO systems

- **Wavefront sensor non-common path aberration correction**
- **Laser pulse tracking**

• 2nd gen Mid IR Imaging Spectrometer: >2' FOV

DM type drawbacks

• **Non-MEMS**

- DM's larger, leads to larger AO optical system
- DM may have hysteresis, requiring interferometric DM monitor
- Cryo DM may be difficult to achieve needed stroke
- Precise repeatability required for open loop operation
- Impractical for MOAO
- **MEMS**
	- Stroke may be insufficient for our need
	- May be too small for some applications
- **Adaptive secondary**
	- Very expensive
	- Diameter limited, restricts non AO science uses
	- Still requires additional DM's, as # actuators limited
- **All**
	- Not available

2007 August 19 **o** correction does not meet our need sc

Derivation of DM requirements

Parameter Driver

-
- - Actuator Spacing
	- Package size
- **Number of actuators Degree of correction, r₀**
- **Fill factor Throughput**
-
-
- **Face sheet (continuous or segmented)**
-
-
- **Repeatability (open loop) Go-to system(s) e.g. IFUs**
-
- **Environment**
	- Open vs window
	-
- **Coatings want silver best R for near-mid IR**
- **Surface roughness ≤ 10 nm rms**
-
-

• **Stroke Atmospheric phase P-V** • **Size Physical size of AO package**

• **Flatness Strehl performance** • **Linearity Dynamic range, open loop system**

• **Speed Wind speed, turbulence spectrum,** $τ_0$ • **Operating temperature Cryo for mid-IR, cold (-30C) for near IR** • **Mountable on tip-tilt stage minimizes physical size, surface count**

– Operate in vacuum necessary in Cryo environment • **When TMT AO implementation time frame** • **Cost Competitive with alternatives**

Calculating requirements

- **How to calculate stroke given** r_0 **,** L_0
- **How to calculate dynamic range**
- **Offload options ("woofers")**
	- Conventional DM
	- Deformable secondary

Stroke Requirements

• **Atmosphere assumptions**

- r₀ =15cm (λ =500nm) is median
- $r_0 = 10$ cm is worst case for design to allow adequate performance over wide range of atmospheric conditions
- $-L_0$ may be finite, but probably highly variable and predominantly effects tilt, and not well known at any sites: we conservatively assume L_0 is infinite (Kolmogorov)
- Rms wavefront error (tip-tilt removed)

$$
\sigma = 0.366 \frac{\lambda}{2\pi} \left(\frac{D}{r_0}\right)^{5/6} = 3.38 \,\mu m
$$
 For r₀=10cm

• **DM stroke**

- Assume 5x for peak to valley, another 20% for systematics
- $\overline{}$ so total stroke requirement is $10.1 \mu m$ (2x for wavefront)

–

Calculating requirements

- **How to calculate dynamic range**
	- Total error budget is \sim 130nm, digitization error is an error budget contributor
- **Offload options ("woofers") reduce MEMS range required**
	- Conventional DM
	- Deformable secondary
	- Residual Stroke $(d_w=woofer inter-actuator spacing)$:

$$
\sigma = \sqrt{0.3} \big(d_w / r_0 \big)^{5/6}
$$

• **Inter-actuator stroke** $(d_a = \text{MEMS inter-actuator spacing})$ **:**

$$
\sigma = \langle [\phi(x) - \phi(x + d_a)]^2 \rangle^{1/2} = \sqrt{6.88} (d_a/r_0)^{5/6}
$$

• **Assume a low order, high stroke, high bandwidth DM is available**

- Adaptive secondary
- Conventional DM (will add extra surfaces)
- Bimorph collimator (may be at an unpleasant conjugate height)
- **Residual stroke requirements for MEMS**
	- Tip tilt removed (2dof) $10.1 \mu m$
	- 2nd order removed (5dof) $7.0 \mu m$
	- 3rd order removed (9dof) 5.5 μ m
	- 4th order removed (14dof) $4.6 \mu m$

• **Field of view impact**

- Woofer is not conjugate to source of all low order errors
- So wide field of view will increase demands on MEMS stroke

Other MEMS requirements

- **Repeatability, dynamic range (and linearity if practical)**
	- Want rms wavefront repeatability errors ≤20 nm
	- Fractional requirement $\sim 0.020/3.38 = 0.0059$ ($\sim 0.5\%$)
	- Woofer reduces fractional requirement
- **Size**
	- Varies with system, \sim 40mm up to ?
- **Number of actuators**
	- 64x64 possibly acceptable
	- $\sim 100x100$ desired (varies with system)
- **When**
	- We need to make system design choices \sim 2 years from now
	- Requires cost estimates and confidence demonstrations by then
	- Require operational hardware for testing \sim 6 years from now
- **Cost (MEMS + all associated electronics)**
	- Inexpensive, affordable spares
	- Funds for needed development \sim 10⁶-10⁷ \$

Number of DM's

- **MOAO**
	- -20 MEMS $+5$ tt
- **Tomography**

 $-0-7$

- **MIRAO**
	- $-1-2+1$ tt
- **Narrow field**
	- $-1-2+1$ tt
- **MCAO**
	- $-$ ~7+3 tt

The importance of "Go-To" or open loop control

- **Optical system greatly simplified (optical systems with both starlight and laser common paths is daunting for 30m)**
- **The measurement errors (from tomography) are a new error source and must be included in error budget and tightly limited**
- **The measured errors (from tomography) must be applied to the DM, yet the correction will not be sensed by the tomographic system (open loop)**
- **The DM correction errors (non repeatability) is a new error source and must be included in error budget and tightly limited**
- **Control bandwidth is relaxed, allowing smaller time delay errors or longer integration (lower laser power)**

Stroke requirements for multi-conjugate AO imager

- **Multiple DMs at conjugate altitudes, each DM covers integrated OPD over a range of altitude**
- **2 DM's:**

• **3 DM's:**

Mechanical Stroke vs r0, microns

–

Open loop: non-common path aberration correction

- **AO relay optics (closed loop case)**
- **Dispersion (589 nm to near-IR)**

$$
\delta \phi = \frac{n_{589} - n_{\lambda}}{n_{589} - 1} \phi
$$

$$
- = 0.0125 \times \phi \text{ at } \lambda = 1 \mu \text{m}
$$

$$
- \phi = 6.6 \ \mu \text{m}; \ \delta \phi = 83 \ \text{nm} \ (\text{for} \ r_0 = 15 \text{cm})
$$

Summary: DM requirements matrix

Laser pulse tracking

- **Segmented (tip/tilt mirrors) one per Hartmann subaperture**
- **Tracks laser pulse as it traverses the sodium layer**

Figure 4- 7: Schematic of a segmented MEMS used for dynamic refocusing. The segmented MEMS at right is equivalent (over each subaperture) to the continuous mirror shape at left. Amplitudes are exaggerated.

Figure 4- 8: Shape of segmented MEMS during tracking of a LGS pulse. Amplitudes are exaggerated.

LGS

LGS

• \triangle OPD = 30 cm x 4 arcsec = 5.7 μ ; \triangle θ = 5.7 μ ÷ 300 μ = 19 mr

$$
t = \Delta h/c = 10 \text{km} / 3 \times 10^8 \text{m/s} = 30 \mu s
$$