# MEMS Actuation Using Electrostatic Combdrives

II-Woong Jung, Daesung Lee, Uma Krishnamoorthy, Olav Solgaard Stanford University

# Outline

- What are electrostatic combdrives and why use them?
  - First order description of Electrostatic combdrives
  - Comparison of combdrives and parallel-plate actuators
- Combdrive Analyses
- Self-Aligned Vertical Combdrives
- Examples
  - Gimbaled 2-D MEMS Biaxial Scanner
  - Tip-tilt-piston Mirror Arrays
    - Design and Simulations
    - Fabrication
    - Characterization of First Generation Arrays
  - Large Throw Deformable Mirror Arrays





**O.Solgaa** 



# Combdrive Basics

- The voltage across the interdigitated electrodes creates a force that is balanced by the spring force in the crab-leg suspension
- Note that combdrives that are fabricated in a single layer (as this one) are automatically self aligned
- This type of actuator is more complex to fabricate than parallel-plate actuators if the forces are to be applied vertically as in AO



O.Solgaard Stanfor

### Force in Combdrives

$$F = \frac{1}{2} \cdot V^2 \cdot \frac{\partial C}{\partial x}$$
$$F = \frac{1}{2} \cdot V^2 \cdot \frac{2N \cdot \varepsilon \cdot h}{g}$$
$$F = V^2 \cdot \frac{N \cdot \varepsilon \cdot h}{g}$$



*N* is number of comb-fingers, *h* is the thickness of the comb-fingers (perpendicular to the plane in the figure), and *g* is the width of gap between the comb-fingers





O.Solgaard Stanfor

### Combdrive vs. parallel plate



$$\frac{F_{cd}}{F_{pp}} = \frac{s^2}{2g^2} \approx \frac{9}{2} \frac{\text{(Displacement)}^2}{\text{(Lithographic limit)}^2}$$



Combdrives good for large displacements and large forces (broad-band AO/Tip-tilt)





### Vertical Combdrive Analysis



# **Stability Analysis**

**Force balance equations** 

$$No_{c}\varepsilon_{0}V^{2}\left[\frac{1}{2(g-\delta g-x)}+\frac{1}{2(g+\delta g+x)}\right] = k_{z}z$$
$$No_{c}\varepsilon_{0}zV^{2}\left[\frac{1}{2(g-\delta g-x)^{2}}-\frac{1}{2(g+\delta g+x)^{2}}\right] = k_{x}x$$

**Stability conditions** 

**Solutions at perfect alignment**  $\delta g = 0$ 

$$k_{z} - \frac{1}{2} \frac{\partial^{2} C}{\partial z^{2}} V^{2} \ge 0$$
$$k_{x} - \frac{1}{2} \frac{\partial^{2} C}{\partial x^{2}} V^{2} \ge 0$$

Maximum sustainable voltage  $V_{\text{max}} = g \sqrt{\frac{\sqrt{0.5k_x k_z}}{N \varepsilon_0 o_c}}$  $z_{\text{max}} = g_{1}$ Maximum deflection





 $\frac{1}{k_x}$ 

### Misalignment related Instability





### Micromirrors with Self-Aligned Vertical Comb Actuators







### **Self-Aligned Actuator Fabrication Process**





### **MEMS Biaxial Scanner**



- Static Optical Defl ection
  - Inner Axis: +/-7.5° at 133V
  - Outer Axis: +/-7.8° at 200V
- Resonant Freq.
  - Inner Axis: 3.5kHz
  - Outer Axis: 980Hz

#### **500μmx500μm**





### **Mirror Rotation**



### Frequency Response



- Frequency Response of inner (left) and outer frame (right)
  Driving voltage: (42+10sinωt)V on both axes
  - Resonant frequency: 3.5 kHz with ± 8.8° optical deflection on the inner axis and 980 Hz with ± 10.5° optical deflection on the outer axis





# **Tip-Tilt Mirrors (CCIT)**

### **Specifications:**

Pixel Size: 100 µm Pixel Count: 1024x1024 Pixel Flatness:  $\lambda/50$  @ 1.55 µm Response Time: 10 µs / 100 µs Fill Factor: 98% Phase Resolution: 8 bits Tip/tilt Angle: ±10° mechanical Pixel Stoke:  $\lambda/2$  @ 1.55 µm For large deflections at small pixel sizes, the comb teeth gaps will need to be small (~1.0µm) for high density and large forces!











# Summary of Device Simulation

|                | Design Goals                        | Designed Device Simulation Results      |
|----------------|-------------------------------------|-----------------------------------------|
| Pixel Size     | 100 μm                              | 100 μm                                  |
| Pixel Flatness | λ/50 @ 1.55 μm                      | $\lambda/50$ achieved using SOI mirror  |
| Response Time  | 10 μs (piston)<br>100 μs (tip/tilt) | < 10 µs (piston)<br>< 100 µs (tip/tilt) |
| Fill Factor    | 98 %                                | 94 %                                    |
| Pixel Stroke   | λ/2 @ 1.55 μm                       | $>\lambda/2$ @ 1.55 µm                  |
| Tip/tilt Angle | $\pm 10^{\circ}$ mechanical         | $\pm 10^{\circ}$ mechanical             |

- Mirror flatness achieved with an SOI mirror process
- Tip & tilt angles of ±10° mechanical simulated
- Pixel stroke & response time satisfy requirements
- Actuation voltages below 200V
- Fill-factor of 94 %





### **1st Generation Objectives**

#### Conservative Design

- First generation design has 3.0um actuator gaps.
- Spring thickness > width. Implemented to reduce mask/etch steps required.

#### Objectives for first generation design

- Focus on process development
- Get working devices to characterize both t he process and the device design
- Avoid tight alignment of coarse bottom co mbs to upper vertical combs in vertical co mbdrive self-alignment: ±0.5um for 1.0um comb gaps

#### Process Development

 Multi-layer wafer bonding of patterned sili con

#### **Actual Device Specifications**

- Pixel Size: 360 um
- Pixel Count: 3x3 Array
- Pixel Flatness: λ/50 @ 1.55 um
- Comb Width/Gap: 3 um
- Response Time: ~20 us/~100 us\*
- Fill Factor: 99%
- Tip/tilt Angle: ±1°,±2° mechanical @200V\*
- Pixel Stoke: λ/3 @ 1.55 mm\*

#### \*simulated values







# Fabrication Process – Wiring/Interco nnect Chip

### Etch oxide Detpice Etchilds it the fille of the state of



Fabrication Process -**Flip-chip Bonding** Î İ T





### Fabrication Process – Substrate Release

### Mask wFtlipkapip blage to the literase bstrate





### **Fabricated Device Dimensions**

#### Simulated and fabricated device dimensions

|                        | Simulated device    | Fabricated device*           |
|------------------------|---------------------|------------------------------|
| Pixel Size             | 360µm               | 360µm                        |
| Layer Thickness Top    | 10.0µm              | ~12.0µm                      |
| Layer Thickness Bottom | 10.0µm              | ~8.0µm                       |
| Spring Thickness       | 10.0μm (inner axis) | 12.0μm (inner axis)          |
|                        | 20.0µm (outer axis) | 20.0µm (outer axis)          |
| Combteeth/Spring Width | 3.0µm               | 3.0μm (top), ~2.5μm (bottom) |
| Combteeth Gaps         | 3.0µm               | ~3.25µm                      |

\*SEM analysis







### Fabricated Mirror/Actuators



### **First Generation Mirror Array**



Chip wire-bonded to DIP package for testing







# Array Surface Profile

#### Minimal initial tilt of unbiased mirrors after release



\*surface quality poor for this array due to processing error





# **Measurement Results**

|                           | Simulations                | Measurement                  |
|---------------------------|----------------------------|------------------------------|
| Pixel Size                | 360µm                      | 360µm                        |
| Pixel Flatness            | λ/50 @ 1.55μm              | 3nm (« λ/50 @ 1.55μm)        |
| Natural Frequency Tip-til | 10.4kHz (inner axis)       | 10.0kHz (inner axis)         |
| t                         | 13.6kHz (outer axis)       | 12.5kHz (outer axis)         |
| Natural Frequency Piston  | 54kHz                      | >54kHz                       |
| Fill Factor               | 99%                        | 99%                          |
| Pixel Stroke              | λ/3 @ 1.55mm               | λ/16 @ 1.55mm                |
| Tip-tilt Angle            | ±1° inner axis             | ±0.1° inner axis             |
|                           | $\pm 2^{\circ}$ outer axis | $\pm 1.7^{\circ}$ outer axis |
| Max. Operation voltage    | 200V                       | 140V                         |





### Large-Stroke Deformable Mirror Arrays

### DESIGN OBJECTIVES:

- 20 μm of vertical displacement with 100V applied to the underlying electrodes
- Resonance frequency >1kHz
- High fill factor (>98%)
- RMS surface error of <30nm</li>

- METHOD EMPLOYED:
- Use a self-aligned vertical comb drive structure and appropriate spring designs
- Spring design and optimizing layer thicknesses
- •Mirror/Pixel size and spacings
- Using singlecrystalline silicon as our mirror layer







### **Simulation Results**

Coventor modal analysis of Mirror: Mode 1: 4.78 kHz







### Conclusions

- Use Combdrives for applications that require large forces (broad band AO and tip-tilt)
- Self-aligned vertical combdrives with small comb gaps of ~1.0um are necessary to achieve the high forces necessary at small device sizes of 100um
- Successful designs with large force, large displacement vertical comb drives
  - Gimbaled Biaxial Scanner
    - Large deflections and large forces demonstrated
  - Tip-Tilt 1<sup>st</sup> Generation device
    - A conservative device with 3.0um comb gaps was designed and successfully fabricated.
    - New fabrication process for high-fill factor mirror arrays with tip-tilt-piston vertical comb actuators has been verified
  - Ongoing Development of Large Displacement deformable piston mirror arrays





### **Device Characteristics**

- Angle limitation of inner axis
  - Stiffer springs due to larger than designed spring thickness: Grinding/polishing process has a TTV(total thickness variation) of 2.0um
  - Less force due to increase in comb gaps: Bottom comb teeth may have been etched in width due to multiple etching steps, increasing gaps between upper and lower teeth
- Voltage limitation
  - Weak comb teeth: Bottom combs may have become weak in the transversal direction due to a decrease in comb thickness and width causing faster pull-in





# Fabricated Wiring/Interconnect Chip





