Parallel Plate Electrostatic Actuation for High-Resolution Deformable Mirrors

Thomas Bifano Boston University Boston MA

8/19/04

CfAO TMT MEMS DM WS

Outline

Electrostatic MEMS DM architectures

Electrostatics and mechanics of actuators

Scaling rules and real-world limits

Case study: Extending stroke

Electrostatic MEMS DM architectures

Edge-supported membranes

Post-supported membranes

Parallel plate (or vertical comb) actuators with supporting posts

Advantages and disadvantages

Controllable spatial frequency comparison

Boston University & Boston Micromachines Corporation Design

Electrostatic actuators

Simplified actuator model:

Electrostatic attraction force

Parallel plates form a capacitor

$$
C=\frac{\varepsilon_{o}\varepsilon_{r}Lw}{g}
$$

- ε _o = permittivity of free space (8.8e⁻¹² F/m)
- ε_{r} = medium dielectric constant (1 for air)
- $L =$ plate length (m)
- $w =$ plate width (m)
- L $g = gap(m)$

Electrostatic attraction force

Potential energy:
$$
U = \frac{1}{2}CV^2 = \frac{\varepsilon_0 \varepsilon_r L wV^2}{2g}
$$

\n $V = \text{applied voltage (V)}$
\n F_e
\n F_{e}
\n F_{e}
\n F_{eq}
\n F_{eq}
\n F_{eq}
\n F_{eq}
\n F_{eq}

Mechanical restoring force

$$
F_m = kx
$$

x = g_o - g
x = displacement

go = initial gap

Static equilibrium: Σ F=0

$$
F_e=F_m
$$

$$
\frac{\varepsilon_{o}\varepsilon_{r}LwV^{2}}{2(g_{o}-x)^{2}}=kx
$$

Cubic equation for x as a function of V^2

Graphical representation of equilibrium

Normalized Displacement (x/g_o)

Graphical representation of equilibrium

Increasing V Graphical representation of equilibrium

Graphical representation of equilibrium

Graphical representation of equilibrium

At critical equilibrium *dFe dx xc* $=\frac{dF_m}{dx}$ *dx xc* Curves are tangent ^ε*o*^ε*rLwVc* 2 (*go* − *xc*) $\frac{1}{3}$ = k $F_e = F_m$ € ^ε*o*^ε*rLwV*² $2(g_o - x)$ $\frac{1}{2}$ = kx

Substitute into equilibrium eqn:

$$
\frac{\varepsilon_{o}\varepsilon_{r}LwV_{c}^{2}}{(g_{o}-x_{c})^{3}}x_{c}=\frac{\varepsilon_{o}\varepsilon_{r}LwV_{c}^{2}}{2(g_{o}-x_{c})^{2}}
$$

 $X_c = \frac{g_o}{2}$ 3

Independent of actuator stiffness

Critical voltage is maximum required to drive actuator

$$
V_c = \sqrt{\frac{8kg_o^3}{27\epsilon_o \epsilon_r L w}}
$$

Real actuator is not a parallel plate, but a bending fixed-fixed beam

Real actuator is not a parallel plate, but a bending fixed-fixed beam

Good news: fixed fixed beam improves stroke:

 $x_c \sim 0.4 g_o$

The mirror adds an additional mechanical force

Energized central actuator exerts a force on its unenergized neighbors

Influence: x_2 / x_1 is determined by the relative stiffness of mirror and actuator. For different BMC designs, influence ranges from 0.00 to 0.25

Voltage versus deflection is nonlinear

There is a voltage limitation for parallel plate actuation

Minimum breakdown voltage as a function of gas Gap at minimum

 Air

lАг

H₂

He

 $CO₂$

 $\overline{\text{N2}}$

 $O₂$

 $SO₂$

H₂S

 $N2O$

 $(press. = 1 atm.)$ Vs min pd at Vs min Gas (V) (torr cm) 8 327 0.567 12 137 0.9 15 273 1.15 53 156 4.0 7 420 0.51 9 251 0.67 7 418 0.5 9 0.7 450 4 457 0.33 8 414 0.6

Naidu, M.S. and Kamaraju, V., High Voltage Engineering, 2nd ed., McGraw Hill, 1995, ISBN 0-07-462286-2

Additional factors in design and performance

Film stresses (usually ~10MPa compressive)

Cause actuator buckling, leading to smaller initial gap

- Buckling amplitude increases with L
- Process control can help
- Cause mirror nonplanarity
	- 30nm RMS typical, 10nm RMS achievable
	- -1nm will require thicker mirror or different material

Spring nonlinearity (strain stiffening)

As actuator deflects, the membrane lengthens

- 50MPa change in stress with 5µm deflection
- This helps linearize voltage versus deflection curve!

Scaling the technology

More stroke: increase gap g_0 or critical deflection ratio (x_c/g_0) 4.5µm is current maximum 10µm is possible with current processes

More actuators: increase array size up to wafer scale (140mm) $~150,000$ actuators requires through-wafer via connections to integrated driver electronics

Resolution

Electrostatic actuation exhibits no hysteresis Operation requires infinitesimal power (100fF capacitor) 13pm repeatability measured on actuator at JPL (2nm at BU)

*Current driver has 8-bit voltage resolution, and offers resolution of about 1% of FS deflection.

A CfAO sponsored effort

Initial device design

Recall that :

$$
V_c \propto g_o^{\frac{3}{2}}, L^2, k^{\frac{1}{2}}
$$

Step 1: Increase gap, by thickening actuator sacrificial layer

$$
\frac{g_o^*}{g_o} = 1.5 \qquad \therefore \qquad \frac{V_c^*}{V_c} = 3.7 \qquad \frac{X_c^*}{X_c} = 1.5
$$

Step 2: Increase stability over a larger gap fraction, by splitting electrodes (can get 60% of gap)

Step 3: Increase actuator length, by altering mask layout

Step 4: Decrease actuator stiffness, by perforating membrane

$$
\frac{k}{k}^{\ast} \sim 0.25 \qquad \therefore \qquad \frac{V_c^{\ast}}{V_c} \sim 0.5 \qquad \qquad \frac{x_c^{\ast}}{x_c} = 1
$$

Net result:

$$
\frac{V_c^*}{V_c} \sim 3.7 * 2 * 0.6 * 0.5 \sim 2.2
$$

$$
\frac{X_c^*}{X_c} \sim 1.5 * 1.5 * 1 * 1 \sim 2.2
$$

Unexpected benefit: Split electrodes prevent failure due to overvoltage instability

Unexpected liability: RMS figure of mirror increased due to actuator compliance

Conclusions

Parallel plate actuation is a robust, reliable approach to MEMS DM development. Its simplicity allows deterministic design. It provides a proven platform for future highresolution DMs.