Parallel Plate Electrostatic Actuation for High-Resolution Deformable Mirrors

Thomas Bifano Boston University Boston MA

8/19/04

CfAO TMT MEMS DM WS

Outline

Electrostatic MEMS DM architectures

Electrostatics and mechanics of actuators

Scaling rules and real-world limits

Case study: Extending stroke

Electrostatic MEMS DM architectures

Edge-supported membranes

Post-supported membranes

Parallel plate (or vertical comb) actuators with supporting posts

Advantages and disadvantages

+	-
Economical to develop Large stroke @ low order Customizable	Sensitive to sound Frame-induced warp Low stroke @ high order
Scalable to many actuators High natural frequency Batch producible	Expensive to develop Fabrication induced stress Limited coating options

Controllable spatial frequency comparison

Boston University & Boston Micromachines Corporation Design

Electrostatic actuators

Simplified actuator model:

Electrostatic attraction force

Parallel plates form a capacitor

$$C = \frac{\varepsilon_o \varepsilon_r L W}{q}$$

- ε_{o} = permittivity of free space (8.8e⁻¹² F/m)
- ε_r = medium dielectric constant (1 for air)
- L = plate length (m)
- w = plate width (m)
- g = gap(m)

Electrostatic attraction force

Potential energy:
$$U = \frac{1}{2}CV^2 = \frac{\varepsilon_o \varepsilon_r L w V^2}{2g}$$

 $V = \text{applied voltage (V)}$

Mechanical restoring force

$$F_m = kx$$

$$x = g_o - g$$

$$x = \text{displacement}$$

$$g_o = \text{initial gap}$$

Static equilibrium: Σ F=0

$$F_{\rm e} = F_m$$

$$\frac{\varepsilon_o \varepsilon_r L w V^2}{2(g_o - x)^2} = kx$$

Cubic equation for x as a function of V^2

Graphical representation of equilibrium

Graphical representation of equilibrium

Graphical representation of equilibrium

Graphical representation of equilibrium

Graphical representation of equilibrium

At critical equilibrium $F_{e} = F_{m} \qquad \frac{\varepsilon_{o}\varepsilon_{r}LwV^{2}}{2(g_{o} - x)^{2}} = kx$ $\frac{dF_{e}}{dx}\Big|_{x_{o}} = \frac{dF_{m}}{dx}\Big|_{x_{o}}$ Curves are tangent

$$\frac{\varepsilon_o \varepsilon_r L w V_c^2}{\left(g_o - x_c\right)^3} = k$$

Substitute into equilibrium eqn:

$$\frac{\varepsilon_o \varepsilon_r L w V_c^2}{(g_o - x_c)^3} x_c = \frac{\varepsilon_o \varepsilon_r L w V_c^2}{2(g_o - x_c)^2}$$

$$X_c = \frac{g_o}{3}$$

Independent of actuator stiffness

Critical voltage is maximum required to drive actuator

$$V_c = \sqrt{\frac{8kg_o^3}{27\varepsilon_o\varepsilon_r Lw}}$$

Real actuator is not a parallel plate, but a bending fixed-fixed beam

Real actuator is not a parallel plate, but a bending fixed-fixed beam

Good news: fixed fixed beam improves stroke:

 $x_c \sim 0.4 g_o$

The mirror adds an additional mechanical force

Energized central actuator exerts a force on its unenergized neighbors

Influence: x_2/x_1 is determined by the relative stiffness of mirror and actuator. For different BMC designs, influence ranges from 0.00 to 0.25

Voltage versus deflection is nonlinear

There is a voltage limitation for parallel plate actuation

Minimum breakdown voltage as a function of gas

(press. = 1 atm.)Vs min pd at Vs min Gas **(V)** (torr cm) 8 Air 327 0.567 12 137 0.9 Ar 15 H22731.15 53 He 156 4.07 CO₂ 420 0.519 N2 0.67 2517 N2O 418 0.59 02 450 0.74 SO2 457 0.33 8 H2S 414 0.6

Naidu, M.S. and Kamaraju, V., High Voltage Engineering, 2nd ed., McGraw Hill, 1995, ISBN 0-07-462286-2

Additional factors in design and performance

Film stresses (usually ~10MPa compressive)

Cause actuator buckling, leading to smaller initial gap

- Buckling amplitude increases with L

- Process control can help

Cause mirror nonplanarity

- 30nm RMS typical, 10nm RMS achievable
- -1nm will require thicker mirror or different material

Spring nonlinearity (strain stiffening)

As actuator deflects, the membrane lengthens

- 50MPa change in stress with 5µm deflection
- This helps linearize voltage versus deflection curve!

Scaling the technology

More stroke: increase gap g_o or critical deflection ratio (x_c/g_o) 4.5µm is current maximum 10µm is possible with current processes

More actuators: increase array size up to wafer scale (140mm) ~150,000 actuators requires through-wafer via connections to integrated driver electronics

Resolution

Electrostatic actuation exhibits no hysteresis Operation requires infinitesimal power (100fF capacitor) 13pm repeatability measured on actuator at JPL (2nm at BU)

*Current driver has 8-bit voltage resolution, and offers resolution of about 1% of FS deflection.

A CfAO sponsored effort

Initial device design

Recall that :

$$V_{c} \propto g_{o}^{3/2}, L^{2}, k^{1/2}$$

gap	5µm
V _c	150V
stroke	2µm
x _c /g _o	0.4
L	300µm

Step 1: Increase gap, by thickening actuator sacrificial layer

$$\frac{g_o^*}{g_o} = 1.5 \qquad \therefore \qquad \frac{V_c^*}{V_c} = 3.7 \qquad \frac{x_c^*}{x_c} = 1.5$$

Step 2: Increase stability over a larger gap fraction, by splitting electrodes (can get 60% of gap)

Step 3: Increase actuator length, by altering mask layout

$$\frac{L}{L}^* = 1.3 \qquad \therefore \qquad \frac{V_c^*}{V_c} \sim 0.6 \qquad \frac{X_c^*}{X_c} = 1$$

Step 4: Decrease actuator stiffness, by perforating membrane

$$\frac{k}{k} \sim 0.25 \qquad \therefore \qquad \frac{V_c^*}{V_c} \sim 0.5 \qquad \qquad \frac{x_c^*}{x_c} = 1$$

Net result:

$$\frac{V_c^*}{V_c} \sim 3.7 * 2 * 0.6 * 0.5 \sim 2.2$$
$$\frac{X_c^*}{X_c} \sim 1.5 * 1.5 * 1 * 1 \sim 2.2$$

Unexpected benefit: Split electrodes prevent failure due to overvoltage instability

Unexpected liability: RMS figure of mirror increased due to actuator compliance

Conclusions

Parallel plate actuation is a robust, reliable approach to MEMS DM development. Its simplicity allows deterministic design. It provides a proven platform for future highresolution DMs.