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Parametric and Optimal Design:
An organized way to design systems

• Come up with a conceptual architecture
• Determine goals of design
• Create a parametric model

– Determine equations that describe important
aspects of design in terms of parameters

• Use model to determine optimal design
parameters
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Parametric and Optimal Design Example:
Define Problem

• Project: make a box to hold stuff
• Goals:

– Volume of box must be V
– Must use as little cardboard as possible
– Must be rectangular
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Parametric and Optimal Design Example:
Determine Architecture

• Architecture: Rectangular prisim
– All six sides made of rectangular pieces of

cardboard
• Meets requirements:

– Holds stuff
– Rectangular



LLNL

Parametric and Optimal Design Example:
Determine Goals

• Goals:
– Volume of box is V
– Surface area of box must be minimized
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Parametric and Optimal Design Example:
Create Parametric Model
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Parametric and Optimal Design Example: Use
Mathematical Model to Determine Solution
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System Architecture

• Architecture
– NL foil bonded to electrostatic actuator

MEMS Actuator Nanolaminate Foil
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Design Goals

• Applications will specify
– Maximum voltage allowable
– Minimum natural frequency
– Minimum value of maximum displacement
– Pixel size
– Minimum cross-talk or minimum spatial

frequency
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Design Goals:
Cross-talk / Spatial Frequency

• NL foil stiffer than MEMS
actuator
– Behaves like a trampoline
– Lots of cross talk
– Not capable of high spatial

frequency features
• MEMS actuator stiffer than

NL foil
– Behaves like a mattress
– Low Cross Talk
– Capable of High Spatial

Frequency features
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Design Goals:
Checker board pattern, a rational figure of merit

• Single point load
– Difficult to model
– Difficult to define

figure of merit
• Checkerboard loading

– Every other pixel
actuated

– Obvious figure of
merit: Difference in
displacement of
adjacent pixels
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Revised Design Goals:

• Applications will specify
– Maximum voltage allowable
– Minimum natural frequency
– Minimum value of maximum displacement of

actuated pixel-maximum displacement of
adjacent un-actuated pixel

– Pixel size
– Minimum cross-talk or minimum spatial

frequency
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Develop Parametric Model

• Parametric Model of Actuator
• Parametric Model of NL foil
• Combine into system model

NL plate

Actuator
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Parametric Model:
Determine Structure Type

• Regular plate
– Resistance dominated by

bending
– Displacement less than

thickness
• Membrane

– Resistance dominated by
stretching

– Displacement much larger than
thickness

• Plate with large deflections
– Both bending and stretching are

important
– Displacement on order of

thickness

Regular
Plate

Membrane

Plate with
large
displacement
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Parametric Model of Actuator
Differential equation for large deflection plate

Where

BMC type actuator only bends
in one dimension

Solve with ODE solver
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Results of Actuator Model
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• 2-D case of actuator
problem
– Now a PDE

• Rayleigh-Ritz Solution
– Solve for small

displacement to
determine shape

– Solve for total energy to
determine large
displacement behavior

Parametric Model of NL foil:
Solution for Plates with Large Displacements
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• Equation for small
displacements

• Assume load is sum of
trigonometric
functions
– In this case a point load

for each actuator
• Displacement will also

be a sum of
trigonometric
functions

Parametric Model of NL foil:
Navier Solution- Regular plates
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Parametric Model of NL foil:
Solve for Energy in Large Displacements
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Solve for energy in plate

Use total energy to find restoring force
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• Describe DM as a system of springs

Parametric Model of System:
Combine Actuator and NL models

Electrostatic
Force

Actuated
Actuator

Unactuated
Actuator

NL
Foil
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Natural Frequency of System

• Rayleigh method
– Max potential energy equals max kinetic energy

• Solve for potential energy of both foil and
actuator at max displacement

• Find kinetic energy of foil and actuator as a
function of natural frequency

• Solve for natural frequency where maximum
potential and kinetic energies are equal
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Determine design:
Finding a NL Foil to Work With an Existing Actuator

• Actuator exists
– All actuator

parameters already
defined

• Must determine NL
that allows
sufficient
deformation
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Determine design:
Find an Optimal Actuator and Foil combination
• Determine constraints

– Maximum and minimum dimensions
– Maximum Voltage?
– Max Displacement?
– Minimum Natural frequency?

• Determine objective function
– Voltage?
– 1/Displacement?

• Use minimization software to find
parameters that minimize objective function
while preserving constraints


