

Parametric Design of A MEMS Actuated Nanolaminate Deformable Mirror

Alexandros Papavasiliou, Lawrence Livermore National Laboratory

L

Parametric and Optimal Design: An organized way to design systems

- Come up with a conceptual architecture
- Determine goals of design
- Create a parametric model
 - Determine equations that describe important aspects of design in terms of parameters
- Use model to determine optimal design parameters

Parametric and Optimal Design Example: Define Problem

- Project: make a box to hold stuff
- Goals:
 - Volume of box must be V
 - Must use as little cardboard as possible
 - Must be rectangular

Parametric and Optimal Design Example: Determine Architecture

- Architecture: Rectangular prisim
 - All six sides made of rectangular pieces of cardboard
- Meets requirements:
 - Holds stuff
 - Rectangular

Parametric and Optimal Design Example: Determine Goals

- Goals:
 - Volume of box is V
 - Surface area of box must be minimized

Parametric and Optimal Design Example: Create Parametric Model

$$V = w \times h \times d$$
$$A = 2(w \times h + w \times d + d \times h)$$

Which simplifies to:

$$A = 2\left(w \times h + \frac{V}{h} + \frac{V}{w}\right)$$

Parametric and Optimal Design Example: Use Mathematical Model to Determine Solution

Solution: $w = h = d = \sqrt[3]{V}$

• Architecture

- NL foil bonded to electrostatic actuator

Design Goals

- Applications will specify
 - Maximum voltage allowable
 - Minimum natural frequency
 - Minimum value of maximum displacement
 - Pixel size
 - Minimum cross-talk or minimum spatial frequency

Design Goals:

Cross-talk / Spatial Frequency

- NL foil stiffer than MEMS actuator
 - Behaves like a trampoline
 - Lots of cross talk
 - Not capable of high spatial frequency features
- MEMS actuator stiffer than NL foil
 - Behaves like a mattress
 - Low Cross Talk
 - Capable of High Spatial Frequency features

Design Goals:

Checker board pattern, a rational figure of merit

- Single point load
 - Difficult to model
 - Difficult to define figure of merit
- Checkerboard loading
 - Every other pixel actuated
 - Obvious figure of merit: Difference in displacement of adjacent pixels

Revised Design Goals:

- Applications will specify
 - Maximum voltage allowable
 - Minimum natural frequency
 - Minimum value of maximum displacement of actuated pixel-maximum displacement of adjacent un-actuated pixel
 - Pixel size
 - Minimum cross-talk or minimum spatial frequency

Develop Parametric Model

- Parametric Model of Actuator
- Parametric Model of NL foil
- Combine into system model

Parametric Model: Determine Structure Type

- Regular plate
 - Resistance dominated by bending
 - Displacement less than thickness
- Membrane
 - Resistance dominated by stretching
 - Displacement much larger than thickness
- Plate with large deflections
 - Both bending and stretching are important
 - Displacement on order of thickness

Parametric Model of Actuator

Differential equation for large deflection plate

$$\nabla^{4} z = \frac{1}{D} \left(q(x) + \frac{1}{2} \frac{Eh}{(1 - v^{2})} \left(\left(\frac{\partial z}{\partial x} \right)^{2} \frac{\partial^{2} z}{\partial x^{2}} \right) + \left(\left(\frac{\partial z}{\partial y} \right)^{2} \frac{\partial^{2} z}{\partial y^{2}} \right) \right)$$

Where

$$D = \frac{Et^3}{\left(1 - v^2\right)} q(x) = \frac{1}{2} \frac{\varepsilon_o V^2}{\left(g - z\right)^2} dx dy$$

BMC type actuator only bends in one dimension

$$\nabla^{4} z = \frac{1}{D} \left(q(x) + \frac{1}{2} \frac{Et}{(1 - v^{2})} \left(\left(\frac{\partial z}{\partial x} \right)^{2} \frac{\partial^{2} z}{\partial x^{2}} \right) \right)$$

Solve with ODE solver

BMC actuator Attachment point Electrodes Ends fixed

Results of Actuator Model

Position, Slope, Moment, Shear, and load for an actuator with V=145, h=1.9053um and g=4.7um

Parametric Model of NL foil: Solution for Plates with Large Displacements

- 2-D case of actuator problem
 - Now a PDE
- Rayleigh-Ritz Solution
 - Solve for small
 displacement to
 determine shape
 - Solve for total energy to determine large displacement behavior

Parametric Model of NL foil: Navier Solution- Regular plates

- Equation for small displacements $\nabla^4 z = \frac{1}{D} \left(q(x) + \frac{1}{2} \frac{Eh}{(1-x)} \right)$
- Assume load is sum of trigonometric functions

$$\left(q(x) + \frac{1}{2} \frac{Eh}{(1-v^2)} \left(\frac{\partial z}{\partial x}\right)^2 \frac{\partial^2 z}{\partial x^2} + \left(\frac{\partial z}{\partial y}\right)^2 \frac{\partial^2 z}{\partial y^2}\right)$$

$$q(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin\left(\frac{m\pi x}{l_x}\right) \sin\left(\frac{n\pi y}{l_y}\right)$$

- In this case a point load for each actuator
- Displacement will also be a sum of trigonometric z(x, y)functions

$$z(x, y) = \frac{1}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{mn}}{\left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2}\right)} \sin\left(\frac{m\pi x}{l_x}\right) \sin\left(\frac{n\pi y}{l_y}\right)$$

Parametric Model of NL foil: Solve for Energy in Large Displacements

Solve for energy in plate

$$dU_{bending} = \frac{1}{2} D \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right) - 2 \left(1 - v \right) \left(\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} - \frac{\partial^2 z}{\partial x \partial y} \right) dx dy$$
$$dU_{stretching} = \frac{Et}{8 \left(1 - v^2 \right)} \left(\frac{\partial z}{\partial x} \right)^4 + \left(\frac{\partial z}{\partial y} \right)^4 + 2v \left(\frac{\partial z}{\partial x} \right)^2 \left(\frac{\partial z}{\partial y} \right) dx dy$$

Use total energy to find restoring force

Parametric Model of System: Combine Actuator and NL models

• Describe DM as a system of springs

Natural Frequency of System

- Rayleigh method
 - Max potential energy equals max kinetic energy
- Solve for potential energy of both foil and actuator at max displacement
- Find kinetic energy of foil and actuator as a function of natural frequency
- Solve for natural frequency where maximum potential and kinetic energies are equal

Determine design:

Finding a NL Foil to Work With an Existing Actuator

- Actuator exists
 - All actuator
 parameters already
 defined
- Must determine NL that allows sufficient deformation

Determine design:

Find an Optimal Actuator and Foil combination

- Determine constraints
 - Maximum and minimum dimensions
 - Maximum Voltage?
 - Max Displacement?
 - Minimum Natural frequency?
- Determine objective function
 - Voltage?
 - 1/Displacement?
- Use minimization software to find parameters that minimize objective function while preserving constraints

