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We present a method for open-loop control of a continuous face sheet MEMS deformable 
mirror of a type that is being developed by a number of MEMS manufacturers. In this 
type of DM, the continuous face sheet is supported by a grid of actuators which in 
tandem deform the mirror surface to a wavefront-correcting shape. The actuators 
themselves will have nonlinear response characteristics with respect to applied voltages 
and their own internal displacements but are otherwise single-valued (non-hysteretic). 
 
We assume that the top face sheet can be modeled simply as a thin plate, in which case it 
deforms according to the plate equation: 
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where z(x) is the displacement of the plate, f(x) is the force, and D is the flexural rigidity. 
The plate equation, we note, obeys linear superposition in response to forces. 
 
At each actuator, three forces are in effect and balance to zero net force (see Figure 1): 
the electrostatic attraction force, ( )wVf E , , which depends on applied actuator voltage, V, 
and actuator displacement, w; the spring return force, ( )wfS , which depends only on the 
actuator displacement w; and the bending plate’s response force as exerted through the 
supporting post, , which depends on z(x) through the plate equation. The three 
forces balance at the post 
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where the subscript i indicates the i’th actuator. 
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Figure 1. Forces and displacements in the MEMS Deformable mirror. 
 

Note that a common force can be added to both the electrostatic and spring return forces 
to yield a net effect of zero on the right hand side of (2) and therefore not change the 
plate force. This situation occurs if the plate is simply translated down uniformly (piston) 



without changing its shape through increased electrostatic force (and compensating 
increased spring return force) at each actuator. 
 
The process of open loop control of the mirror surface is comprised of two steps: 
 
Step 1: determine the vector of actuator forces that form a given overall mirror shape 
 
The plate force, , is knowable given a desired shape z(x( )iP zf i) through solution of the 
plate equation (1). Of course, only a subspace of possible shapes can be addressed due to 
the limitations on where the forces can be applied, i.e. at actuator locations, xi. In essence 
the finite number of discrete actuator locations places a spatial frequency limitation on 
the controllable deformations of the surface. Given a desired shape however, it is possible 
to find a linear least-squares fit to the forces that best achieve this shape via the plate 
equation. 
 
Step 2: at each actuator, determine the voltage that sets the desired actuator force 
 
The next step is to find the voltages to apply to the actuators in order to achieve the 
derived set of plate forces. 
  
The right hand side of equation (2) is localized to the actuator and a function of two 
variables, V and w, which are specific to the actuator. Since the post is assumed stiff and 
uncompressible, the actuator displacement, w, is equal to the plate displacement z plus a 
constant (the “bias”) that is common to all actuators. If we knew the functional form of 
the right hand side of (2), written as: 
 ( ) ( )bzVfwVf iiRiiR += ,,   
 
we could simply set the bias at a convenient value and, for the known plate displacement 
at the actuator, zi, look up the values of Vi that causes ( )iiR wVf ,   to equal the known plate 
force . ( )iP zf
 
Note that this process of setting the actuator voltage (given the desired actuator force) is 
independent for every actuator. All of the cross-coupling in MEMS forces is through the 
plate force on the left hand side of (2). The right hand side of (2) denotes the actuator 
forces, which are not cross-coupled. 
 
Calibration Process 
 
The functional form of fR can be determined empirically, through a series of tests 
performed on the deformable mirror in an interferometer. The advantage of the empirical 
approach is that it does not depend on modeling the details of the actuator structure, 
linearity of the spring, shape of the voltage fields, etc. Essentially our only assumptions 
made are that the continuous face sheet acts like a thin plate (equation (1)) and that the 
electrostatic and spring return forces are single valued and isolated to each actuator. 
 



The testing puts points on a fR vs Vi plane (Figure 2) which are each parameterized by wi, 
as determined by the interferometer. Note that we must measure w, the absolute 
displacement of the mirror surface with respect to the supporting structure of the MEMS; 
knowledge of relative shape of the top surface, z, alone is not sufficient. The value of fR is 
simply the (balancing) value of fP as determined by the plate equation solution that 
achieves the interferometer-measured surface shape, z(x). After a sufficient amount of 
data are collected, it is illustrative to draw contours of constant w on this graph (Figure 2) 
in order to see how one determines Vi given fR and wi. 
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Figure 2. Graph of calibrated actuator operating points, and the lookup procedure 
for determining actuator voltage given plate force and displacement 

 


