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Wave-front reconstruction with the use of the fast Fourier transform (FFT) and spatial filtering is shown to be
computationally tractable and sufficiently accurate for use in large Shack–Hartmann-based adaptive optics
systems (up to at least 10,000 actuators). This method is significantly faster than, and can have noise propa-
gation comparable with that of, traditional vector–matrix-multiply reconstructors. The boundary problem
that prevented the accurate reconstruction of phase in circular apertures by means of square-grid Fourier
transforms (FTs) is identified and solved. The methods are adapted for use on the Fried geometry. Detailed
performance analysis of mean squared error and noise propagation for FT methods is presented with the use
of both theory and simulation. © 2002 Optical Society of America
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1. INTRODUCTION
Current adaptive optics (AO) systems use vector–matrix-
multiply (VMM) reconstructors to convert gradient mea-
surements to wave-front phase estimates. As the num-
ber of actuators n increases, the time to compute the
reconstruction by means of the VMM method scales as
O(n2). The number of actuators involved in AO systems
is expected to increase dramatically in the future. In as-
tronomical applications, this is due to both increasing
telescope diameters and new higher-resolution applica-
tions on existing systems. There are many other appli-
cations, including high-resolution laser beam control and
communications systems. This increase in size, from
hundreds up to tens of thousands of actuators, requires a
faster method for wave-front reconstruction.

A wave-front reconstruction method with use of the dis-
crete Fourier transform (DFT) was suggested by Freis-
chlad and Koliopoulos.1 This method is for square aper-
tures on the Hudgin geometry. In a further paper,2 the
same authors derived methods for additional geometries,
including the Fried geometry, which uses one Shack–
Hartmann (SH) sensor in each subaperture to produce
gradient measurements. Freischlad also considered the
case of small circular apertures.3 This paper builds on
that work in four important ways. First, the circular-
aperture case is thoroughly examined. The boundary
problem is identified, showing that use of only in-aperture
data for circular apertures leads to large errors. Two
methods for solving this boundary problem are presented.
They both provide perfect reconstruction of sensed modes
when no noise is present. Second, the Fourier transform
(FT) method and boundary techniques are adapted for use
on the Fried geometry. Third, the performance of these
methods, in terms of both speed and reconstruction error,
is analyzed. Reconstruction is treated as an estimation
problem, which leads to a linear model of system error in
response to noise. Theoretical results for small aper-
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tures are confirmed by simulation. Finally, the perfor-
mance of large systems (up to 50,000 actuators) is exam-
ined through simulation. With the use of an FT method
presented in this paper, the implementation of a 10,000-
actuator system with satisfactory speed and reasonable
error performance is feasible given current technology.

This paper is focused on the performance of FT recon-
structors with the use of specific discrete models. There-
fore it will not directly address phenomena associated
with the correction of continuous wave fronts such as
branch points or partially obscured subapertures. In
particular, deformable mirror (DM) influence functions
are not considered. Unlike VMM reconstructors, which
are in practice obtainable directly from the AO system
DM and sensors, FT methods are filters derived to fit cer-
tain specific sensor models. Current research by the au-
thors addresses these more complex issues and will be
presented in a subsequent paper.

2. INVERSE SPATIAL FILTER
The basic inverse spatial filter, first derived by
Freischlad,1 is presented here again for reference, with an
emphasis on its derivation in terms of an inverse filtering
problem, as opposed to modal expansion over Zernike
polynomials.2 Using the Hudgin geometry,4 we model
the sensor measurements as the first differences of the
wave-front phase. This corresponds to wave-front sen-
sors centered between each pair of points (see Fig. 1).
The piston-removed (across the aperture) phase f@m, n#
is an N 3 N discrete signal. The gradients sx@m, n# and
sy@m, n# are simply the first differences between adjacent
phase points:

sx@m, n# 5 f@m 1 1, n# 2 f@m, n#, (1)

sy@m, n# 5 f@m, n 1 1# 2 f@m, n#. (2)
2002 Optical Society of America
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The DFT is applied to a finite-duration signal, under
the assumption that the signal is periodic. The forward
transform of a spatial signal of size N 3 N is

X@k, l# 5 F $x@m, n#%
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With use of the shift property of the DFT, Eqs. (1) and (2)
become

Sx@k, l# 5 F@k, l#FexpS j2pk

N D 2 1G , (4)

Sy@k, l# 5 F@k, l#FexpS j2pl

N D 2 1G . (5)

To get the inverse filter, multiply each of the above equa-
tions by the complex conjugate of its exponential term
and combine them, solving for F@k, l#:
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(6)

The pole of the filter at k,l 5 0 is fixed by making that
value zero, which sets the dc gain (or piston) of the wave-
front phase across the whole square grid to zero. As this
mode is disregarded in reconstruction, it does not add any
error. Taking the inverse transform produces the esti-
mate f̂@m, n#.

The performance of this reconstruction method has al-
ready been analyzed for square apertures1,2 and on small
circular apertures.3 However, a systematic study of the

Fig. 1. Hudgin and Fried sensor geometries. The circles rep-
resent the Shack–Hartmann wave-front sensor locations. In
the Hudgin geometry, the gradients are first differences. In the
Fried geometry, the gradients are the average of the two nearest
first differences to the subaperture.
applicability of this filter on large circular apertures has
not been done. Section 3 presents the results of such a
study.

3. RECONSTRUCTION ON A CIRCULAR
APERTURE
The inverse filter was derived for a regular grid of gradi-
ent measurements. When one is dealing with a real AO
system (astronomical telescopes in particular), the gradi-
ents are typically available only on a circular aperture.
The measurement data cannot be simply zero padded and
filtered. Doing so produces huge errors. See Fig. 2 for
an illustration of these errors.

First, this boundary problem is identified and ex-
plained. Then two methods for altering the gradient
data of a circular aperture are presented. These methods
produce perfect reconstruction of sensed modes in the ab-
sence of noise.

There are two key assumptions in the inverse filter
derivation that must be satisfied for it to work. The first
assumption is that f is spatially periodic. This assump-
tion is necessary for use of the DFT method, and it must
be maintained for a set of gradient measurements. A
check on this condition is that the sum of every row (for x
gradients) or column (for y gradients) in the N 3 N gra-
dient signal equals zero. The second assumption is based
on the modeling of the gradients as first differences. Any
closed path of gradients must sum to zero. Both of these
conditions have been identified in earlier work.1,3

Fig. 2. Estimate error from reconstruction of just the gradients
inside the aperture, with the rest set to zero. No noise was
added so as to clearly isolate the effects of the boundary. The
gradients were calculated directly from phase points by using
Eqs. (1) and (2). Each curve in the plot is a slice across the ap-
erture along a row of actuators. This simulation was done on a
6376-actuator system, which was 90 actuators in diameter on a
128 3 128 grid. The input phase aberration had an rms error of
1690 nm. The reconstruction had an rms error of 1002 nm for
this trial. The error spans the aperture and is not easily re-
moved. (Note how the error changes shape and sign from row 40
to row 88.) With the use of either of the boundary methods, the
reconstruction error was essentially 0 nm.
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It is important to note that this spatial periodicity as-
sumption does not require that the sensed wave front be
inherently periodic or that reconstruction be done on a
very large grid to obtain correct low-frequency compo-
nents. Just as VMM reconstructors work while estimat-
ing only the phase values inside the aperture, FT meth-
ods accurately reconstruct on grids of aperture size.
Consider an aperture with N actuators (phase points)
across the diameter. In discrete space, the lowest fre-
quency that can be represented is 2p/N, which has pe-
riod N. A phase aberration of a pure sinusoid sin(px/N),
where x represents the actuator index across the aper-
ture, has period 2N, which is twice the width of the ap-
erture. It can still be sensed and reconstructed correctly,
however. That is because only one half of a period of the
sinusoid is sensed in the aperture, and it is this segment
of the sinusoid that is repeated, on account of spatial pe-
riodicity. If gradients are taken exactly with Eqs. (1) and
(2), any discrete signal will be exactly reconstructed by
the filter in Eq. (6), minus the piston.

Because of the spatial periodicity and closed-path-loop
conditions, zero-padding the gradient measurements is
incorrect. Doing so violates both conditions in general.
These inconsistencies manifest themselves in errors that
span the aperture. The errors do not become less signifi-
cant as the aperture size increases. Unlike the square-
aperture case,2 the amplitude of the error remains large
and spans the circular aperture.

Proof of this comes from an examination of the Hudgin
geometry and reconstruction process. Consider the gra-
dients taken from the wave-front phase f@m, n# across a
circular aperture on a square grid. There are three types
of gradients, which are illustrated in Fig. 3. The gradi-
ents from sensors inside the aperture are the inside gra-
dients ix@m, n# and iy@m, n#. The gradients that cross
the aperture edge are the boundary gradients bx@m, n#
and by@m, n#. When the data are zero padded outside
the aperture, these boundary gradients are incorrectly set
to zero. Last, the gradients wholly outside the aperture
are the outside gradients. These can safely be considered
to be zero everywhere. By linearity, the correct gradient

Fig. 3. The three types of gradients are shown in the Hudgin
geometry at the edge of an aperture. Bold lines are the bound-
ary gradients bx and by . These connect phase points across the
aperture edge. Thin solid lines are the inside gradients ix and
iy , which can be obtained from measurement. The dotted lines
are the outside gradients. Note that a closed loop across the ap-
erture edge does not sum to zero if the boundary gradients are
set equal to zero.
sets can be written as a sum of the inside and boundary
gradients:

sx@m, n# 5 ix@m, n# 1 bx@m, n#, (7)

sy@m, n# 5 iy@m, n# 1 by@m, n#. (8)

Because the filtering process is linear, we can consider the
results of filtering each part separately. Filtering the
whole sx@m, n# and sy@m, n# will produce an exact recon-
struction. Taking only the values inside the aperture
and zero padding is equivalent to filtering just ix@m, n#
and iy@m, n#. This means that the error of this estimate
is exactly the result of filtering bx@m, n# and by@m, n#.
It is this term that generates the large errors when zero
padding.

The previous development suggests that a method for
obtaining a correct set of gradients involves estimation of
the boundary and/or outside gradients. Two different
methods are now presented that generate consistent sets
of gradients. With no noise, both methods produce per-
fect reconstruction of all the sensed modes. Further-
more, it will be shown below that the methods require
only O(n) operations, preserving the speed advantage of
the FT methods.

A. Boundary Method
The first method will be called the boundary method be-
cause it estimates the gradients that cross the boundary
of the aperture. It follows directly from the development
above of inside, boundary, and outside gradients. This
process is shown in Fig. 4.

Only the inside gradients are known from measure-
ment. The outside gradients can all be set to zero. This
leaves the boundary gradients undetermined. A loop
continuity equation can be written for each of the two
smallest loops that involve a boundary gradient. Setting
each of these equations to zero describes a solution that
satisfies loop continuity across the whole grid. With use
of the configuration shown in Fig. 4, a partial list of the
loop equations is

2u1 1 u2 5 a, u2 1 u3 5 0,

u3 1 u4 5 c 1 b u4 1 u5 5 0 u5 2 u6 5 d.
(9)

All of these loop continuity equations involving the
boundary gradients combine to form a linear system.
Where u is the vector of all boundary gradients and c is a
vector containing sums of measured gradients, the system
can be expressed as

Mu 5 c. (10)

The matrix M is fixed for a given geometry. The vector c
has a fixed combination of gradients, but the value of
these gradients depends on the actual measurement. If
there is no noise, the system has an infinite number of
valid solutions. Each of these solutions represents, in es-
sence, a different piston offset of the aperture from zero
phase.

When there is noise on the measurements, this system
has no exact solution in general. The boundary gradi-
ents can instead be estimated by using a least-squares fit.
This estimation can be solved by such methods as using
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the pseudoinverse of M. In this case, the boundary gra-
dients are correlated with the noisy measurements but
generally have much higher variance than the noise.

B. Extension Method
The second method of obtaining a consistent set of gradi-
ents will be called the extension method because it ex-
tends out the gradients from inside the aperture. It is il-
lustrated in Fig. 5.

The extension method extends the wave-front shape to
outside the aperture. It does this by a simple method

Fig. 4. Boundary method. Setting each closed loop across the
aperture edge to zero results in an equation relating the un-
known boundary gradients to the measured inside gradients and
the zeroed outside gradients. In this example, the equations for
the boundary gradients u1, u2 ,... are as follows, starting from
the upper left corner: 2u1 1 u2 5 a, u2 1 u3 5 0, u3 1 u4
5 c 1 b, u4 1 u5 5 0, and u5 2 u6 5 d. The complete set of
equations for the whole aperture forms a linear system, which is
then solved for the estimate of the boundary gradients.

Fig. 5. Extension method, shown for N 5 6. The values of the
gradients closest to the aperture edge are repeated outside the
aperture. For example, gradients a, c, and e are each topmost in
their columns and are extended upward out of the aperture.
The unmodified gradients, which are left as zeros, are not shown
in this figure for clarity. The seam gradients are along the right
and bottom edges. These gradients ‘‘connect’’ the spatially peri-
odic copies of the wave-front phase, and they must be set so that
every row of the x gradients and every column of the y gradients
sum to zero. For example, the leftmost column in this case must
satisfy the equation s1 5 2b 2 l 2 j. Examination of this fig-
ure shows how loop continuity is satisfied exactly by the exten-
sion method.
that is based on preserving loop continuity. The x gradi-
ents are extended up and down out of the aperture, while
the y gradients are extended to the left and the right.
For example, the uppermost x gradient in a given column
in the aperture has its value repeated in all the outside
gradients above it. Loop continuity is preserved, even
where the extended gradients cross each other, such as at
the ‘‘corners’’ of the aperture. All the smallest loops in-
volving these new extended gradients will automatically
sum to zero. Each extended gradient is canceled out in
the smallest-loop equation by one with the identical value
below or above it.

The final step is to fix the spatial periodicity. The
seam gradients are those that connect one copy of the
phase signal to the next. Observe in Fig. 5 at the bottom
how the extended values from the top of the aperture
meet those from the bottom. The seam gradients connect
them. These seam gradients are set from the spatial pe-
riodicity condition by setting the sum of their row or col-
umn to zero. This satisfies the smallest-loop conditions
for the seam gradients as well.

The extension method produces a completely consistent
set of gradients. These provide perfect reconstruction of
the phase when there is no noise, except for the piston. If
there is noise, the same procedure is done, though loop
continuity will not hold on loops involving the seam gra-
dients, just as the boundary gradients in the boundary
method were the best, but not an exact, solution when
there was noise.

The principles and the methods used above can be ap-
plied to fill in missing information in general, such as
with different aperture shapes or when there is central
obscuration due to the secondary mirror in a large tele-
scope.

4. ADAPTING TO THE FRIED SENSOR
GEOMETRY
The inverse filter as described above is specific to the
Hudgin geometry. The Fried geometry5 is frequently
used, however, in modeling the behavior of SH sensors.
It models the gradients that are generated by SH sensors,
which are centered between phase points. This allows
one sensor to provide both x- and y-gradient measure-
ments. See Fig. 1 for an illustration and a comparison
with the Hudgin geometry. This sensor configuration is
common in astronomical AO systems. Its features and
implications have to be considered if an FT method is
used for reconstruction. In this section, the inverse filter
is derived for the Fried geometry and the boundary and
extension methods are adapted to it. This treatment has
some similarities to, but also significant differences from,
the Fried-geometry consideration of Freischlad.2

A. Filter Derivation
In the Fried geometry, the gradient is modeled as the av-
erage of the two nearest first differences:

sx@m, n# 5
1
2 ~f@m 1 1, n# 2 f@m, n#

1 f@m 1 1, n 1 1# 2 f@m, n 1 1# !,

(11)
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sy@m, n# 5
1
2 ~f@m, n 1 1# 2 f@m, n#

1 f@m 1 1, n 1 1# 2 f@m 1 1, n# !.

(12)

Using the same method as that above, we can derive the
inverse spatial filter to reconstruct the phase:

This filter has not been previously derived. This filter
also has the pole at the piston mode and an additional
pole at the highest-frequency, or waffle, mode. Both
poles are zeroed out. This latter mode is not sensed in
the Fried geometry. Nor is it normally controlled for in
AO systems. A waffle error will therefore be present, the
magnitude of which depends on the amount of waffle in
the input phase. In practice, under atmospheric turbu-
lence this waffle component is actually quite small.

We can calculate the variance of the Kolmogorov waffle
component as follows. The Kolmogorov spectrum is
given by6

Sf~k ! 5 0.023k211/3r0
25/3 , (14)

where k is the spatial frequency. The variance is the in-
tegral of this spectrum over a region of k-space centered
at the waffle frequency 1/2d and having an extent Dk ap-
propriate to the aperture size, Dk ' 1/D; that is,

sfw

2 ' 4Sf~1/2d !Dk2. (15)

The piston-removed wave-front variance as derived by
Noll6 is given by

sf
2 5 1.03~D/r0!5/3 (16)

and dividing produces

sfw

2 ' 1.13~d/D !11/3sf
2 . (17)

This means that for 13 or more subapertures across the
diameter of the telescope, the waffle component is at most
0.01% of the total piston-removed wave-front variance.
Therefore the error due to this missed waffle component
is very small.

B. Dealing with a Circular Aperture
We now know that the values of the gradients outside the
aperture must be estimated with some method for proper
reconstruction. But in the Fried geometry the gradients
do not connect points, so the boundary and extension
methods cannot be applied directly. Using the same
method as Freischlad,2 a simple invertible linear trans-
form can convert the gradients into two sets that do con-

nect points on the grid. The gradients are now oriented
along a different orthogonal basis, in the directions re-
ferred to as a and b. Figure 6 illustrates the two new un-
connected grids:

sa@m, n# 5 sx@m, n# 1 sy@m, n#, (18)

sb@m, n 1 1# 5 sx@m, n# 2 sy@m, n#. (19)

Here this method diverges from Freischlad’s. Instead of
using a filter for this new geometry,2 we treat the two
grids separately as cases of the Hudgin geometry. With a
few minor modifications, such as making the new grids
square shaped, the boundary and extension methods can
be applied directly to these two sets in the a and b direc-
tions.

The primary difficulty in using the Fried geometry
arises from the recombination of two disjoint grids.
These grids are independent of each other, which is a di-
rect result of the waffle mode being unsensed and uncon-
trollable. Processing each grid independently and then
recombining them can result in large waffle errors. For-
tunately, when no noise is present, this waffle error is
simple to remove, as it has constant magnitude in the ap-
erture.

When there is noise, matters become more difficult. In
practice, the boundary and extension methods have dis-
similar noise properties after filtering. These error
terms are shown in Fig. 7. The boundary method was ob-
served to cause wafflelike errors that varied widely across
the aperture. The magnitude and the sign of the waffle
typically changed across the aperture in ways dependent
on the noise and the specific realization of phase aberra-

Fig. 6. The coordinate transform from the Fried geometry pro-
duces two disjoint grids. One grid is connected by the dashed
gradients, the other by the solid gradients. Combining these
uncoupled grids introduces an unknown waffle error.

F̂@k, l# 5 5
0, k, l 5 0, k, l 5 N/2

H FexpS 2
j2pk

N D 2 1GFexpS 2
j2pl

N D 1 1GSx@k, l#

1FexpS 2
j2pl

N D 2 1GFexpS 2
j2pk

N D 1 1GSy@k, l#J
3 F8S sin2

pk

N
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pl

N
1 sin2

pl

N
cos2

pk

N D G21

, else

. (13)
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tion. The noise could not be cleanly removed. The ex-
tension method produced more correlated noise on the es-
timate. It did not normally vary in sign, and the
magnitude variations were much less severe. The exten-
sion method’s noise could be removed for the most part in
a simple waffle-removal step. The boundary method’s er-
ror was severe enough to limit the usefulness of the re-
construction. This modal removal step is discussed in
Section 5.

5. MODAL REMOVAL
As Section 4 has demonstrated, it is desirable to discard
certain modes from the reconstruction. Piston is a mode
that is discarded in the general case. A second mode that
is normally removed is waffle. This is because Fried-
geometry reconstructions, including FT methods, can in-
troduce large waffle errors into the estimate. In a VMM
reconstructor, this modal removal can be built directly
into the matrix. Modal removal in an FT-based method
is a separate step but is quick and easy to implement in
O(n) steps.

The fastest way to remove a mode from the spatial fil-
tering estimate would be to identify the frequency coeffi-
cients for that mode and zero them. The spatial filter al-
ready does this for piston (and waffle in the Fried-
geometry case) across the whole square grid. However,
simply zeroing the frequency coefficients is not a good
method in practice. This is because modes of interest in-
side the aperture are not compactly represented in fre-
quency space, so determining the correct amount to re-
move is nontrivial. Second, though the power at high
frequencies is low, it is essential for sharp features. In-
correctly removing high-frequency components can have
deleterious effects on the accuracy of the estimate, espe-
cially at the edges.

Fig. 7. Waffle is a significant concern in Fried-geometry recon-
structions in noisy conditions. For a representative sample case
with noise, the errors of the boundary and extension reconstruc-
tions, as compared with a perfect reconstructor, are shown. At
the top is the reduced error in the extension case after waffle re-
moval. Global waffle is completely removed, while local waffle,
which is due to noise, remains.
Instead, the modal removal process is applied in the
spatial domain. The coefficient for the mode is deter-
mined by projection. Where v@m, n# is the mode of con-
cern,

cv 5

(
m50

N21

(
n50

N21

f̂@m, n#v@m, n#

(
m50

N21

(
n50

N21

v@m, n#v@m, n#

. (20)

Then the estimate with that mode removed is

f̂2v@m, n# 5 f̂@m, n# 2 cvv@m, n#. (21)

This method completely removes all global waffle across
the entire aperture. Local waffle will still remain. An
orthogonal basis set must be used for modal removal.
For example, a waffle-mode vector of 61 over an odd num-
ber of actuators has a piston component that must be re-
moved first.

6. COMPLETE METHODS
The previous sections have identified the boundary prob-
lem with circular apertures and presented methods to
solve it. Both the Hudgin and Fried geometries have
been considered. For the performance analysis, the best
overall method for each geometry, as determined by
analysis and simulation, is now presented. The complete
methods are illustrated as a flow chart in Fig. 8.

The Hudgin geometry method will be called the
Hudgin-FT method. Assuming this geometry, the FT re-
construction consists of the following steps. The exten-
sion method is applied to the measured gradients. Then
the gradients are Fourier transformed, and the inverse
filter [Eq. (6)] is applied. The result is inverse trans-
formed, and piston is removed to obtain the final esti-
mate.

Fig. 8. Complete process of FT reconstruction. For the
Hudgin-FT method, which is based on the Hudgin geometry, the
gradient measurements are first extended. They are Fourier
transformed, filtered, and inverse transformed before piston is
removed. For the Fried-FT method, which is based on the Fried
geometry, a few more steps are required. These are illustrated
by the dashed arrows. The gradients are first converted to the
two grids before they are extended and filtered. The two results
are recombined, and then waffle and piston are removed.
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The Fried-geometry method will be called the Fried-FT
method. The gradients are first converted from the x, y
directions to the a, b directions [recall Eq. (18)]. The two
grids are made consistent by using the extension method.
These two grids are Fourier transformed and then filtered
individually with the use of Eq. (6). The results are in-
verse transformed and recombined. Waffle and piston
are removed last.

These two methods reconstruct all sensed modes per-
fectly when there is no noise. Next, their speed and per-
formance in the presence of noise will be analyzed.

7. TIME ANALYSIS
The whole purpose of exploring an FT approach to wave-
front reconstruction is to exploit the speed of the fast Fou-
rier transform (FFT). For sizes that are powers of 2, this
implementation of the DFT is O(n log n) to compute,
where n is the total number of elements. A VMM recon-
struction on the same number of elements is O(n2).
Finding a faster way to reconstruct than the VMM
method is essential for large AO systems.

We must also consider the time cost of the extra pro-
cessing steps in the FT reconstruction to ensure that it re-
mains fast. These extra operations must be at most
O(n log n) so as to not adversely affect performance. For
the analysis of the extra processing, the following param-
eters are used. The width (in phase points) of the square
grid is N. When the FFT is used, N is a power of 2. The
radius of the aperture is R. The number of total ele-
ments is n 5 N2. The number of actuators is approxi-
mately a 5 pR2. When the FFT is used, the radius R
varies from N/4 to N/2. If the radius were smaller than
N/4, the aperture could be fitted on a smaller power-of-2-
sized grid. A radius bigger than N/2 means the aperture
is too large for the grid and must be reconstructed on the
next power-of-2-sized grid. For the DFT, the radius R is
slightly smaller than N/2.

For the Hudgin-FT method, the time analysis is simple.
The first step is the extension process. In each dimen-
sion, 4R gradients are extended to fill out 2RN 2 a other
gradients. Then 2N seam gradients are set, each by ad-
dition of N 2 1 other gradients. If all of these operations
are done sequentially, this amounts to 2(2RN 2 a)
1 2N(N 2 1 1 1) fundamental operations. For small
apertures on large grids, R is at least N/4, making the
number of the above operations (3 2 p/8)N2. This is
O(n). For very large apertures, where R is nearly N/2,
there are (4 2 p/2)N2 operations. This is also O(n).
For example, as shown in Fig. 5, N 5 6 and R 5 2, lead-
ing to ten gradients set by extension, and 12 assignments
to sums of five elements each, which is 10 1 12 3 (5
1 1) 5 82 operations.

After the signals are Fourier transformed, the filter is
applied by multiplication and addition over the N 3 N
grid. This is O(1) operations over n elements, or O(n).
After the inverse transform, the piston is removed. This
removal is an addition of all of the elements and a sub-
traction of the result from each one, which is again O(n).
Therefore the extra processing in the Hudgin-FT method
is O(n).
The Fried-FT method is not so simple. The first step is
the linear transform of the gradients. This requires 2n
additions. Then the extension process is applied to the
two separate grids. In this case, R varies from N/(4A2)
to N/(2A2). This results (as above) in O(n) operations.
Setting the two seam gradients for the two grids is O(n).
The same filtering as that in the Hudgin-FT method is
done, but twice. The final waffle removal is the same
amount of computation as that for the piston removal,
namely, O(n). So the extra processing in the Fried-FT
method is also O(n), though for a given geometry the
Fried-FT method requires more than twice as many op-
erations.

The processing for both the Hudgin-FT and Fried-FT
methods is O(n). The overall processing time for FT re-
construction is therefore dominated by the actual DFT
implementation. For power-of-2-sized grids, the FFT is
O(n log n). Using other size grids requires having a fast
implementation, such as one based on prime factors.

Not only are the FT reconstructors faster in theory, but
the implementation of a large system is within computa-
tional reach today. An estimate of performance require-
ments illustrates this. For an AO system running at 200
frames per second, the entire reconstruction must be done
in 5 ms. This means that for the Hudgin-FT method the
data extension, two forward FFTs, the filter application,
and one inverse FFT must be completed in at most 5 ms.
A good estimate of FFT time is 1 ms. For the Fried-FT
method, there are twice as many operations, so a single
FFT needs to be done in 0.5 ms. A 10,000-actuator sys-
tem requires a 128 3 128 element FFT. This can be
done in 1DL on a 1.7-GHz Pentium 4 in 1.8 ms. This re-
sult could be reduced by faster hardware or a different
implementation.

8. PERFORMANCE ANALYSIS
It is clear that the FT methods are fast. It must now be
shown that they are reasonably accurate as well. This is
particularly important because these methods were not
derived or proven to be optimal; they were developed to be
fast. By modeling the reconstruction process as an esti-
mation problem, a powerful framework for performance
analysis can be established. In the case of white noise on
the gradient measurements, the mean squared error of
the reconstruction can be expressed as a linear function of
the noise variance. This allows easy comparison of dif-
ferent methods. This section will develop the estimation-
problem analysis and discuss the significance of the vari-
ous error metrics.

A. Modeling the Measurement and Reconstruction
Processes
The wave-front sensing and reconstruction process can be
modeled by using vectors and matrices. This model is a
simple one—it treats the aberrated wave-front phase as a
set of discrete points. It allows for different geometries
for gradient measurement (e.g., Hudgin and Fried) to be
used, as well as arbitrary reconstruction methods.

The first step in the model is the conversion of the
wave-front phase to gradient measurements. The gradi-
ents g are generated from the piston-removed wave front
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f through matrix H under additive noise n. This noise is
assumed to be zero mean and uncorrelated with the mea-
surements and the wave front, with covariance matrix
Ln :

g 5 Hf 1 n. (22)

The estimator function (e.g., reconstructor) can also be ex-
pressed as a matrix M. If M is complex, as it is in the
case of the FT method, it must be conjugated when it is
transposed. However, the derivation below will omit no-
tation of conjugation for clarity. The actuator commands
f̂ are estimated from measurements g with the matrix:

f̂ 5 Mg. (23)

Note that this matrix M can express nearly any linear re-
construction method, whether a standard minimum-least-
squares VMM reconstruction, or the complete Hudgin-FT
or Fried-FT method. It is required that the reconstructor
M produce an estimate with zero piston. (If it does not, it
can be easily converted to do so by multiplication with a
piston-removal matrix.) Furthermore, M is static and
does not adaptively change with conditions (as it would if
it depended on the noise variance). This assumption is
sufficient for the present analysis of FT reconstructors,
though it is not applicable to the more general result that
the optimal reconstruction matrix is dependent on the
noise distribution.7

The error of this estimate is simply the difference be-
tween the estimate and the wave-front phase:

e 5 Mg 2 f (24)

The bias of the estimate is defined as the expectation of
the error of the estimate:

b 5 E~e!. (25)

The error variance is then

Le 5 E@~e 2 b!~e 2 b!T#. (26)

The mean squared error is also of interest. The mean
squared error is a random variable and is the average of
the squared error at every point inside the aperture.
Therefore we want to deal with its expectation. Recall-
ing that a is the number of actuators, we have

mse 5
E~eTe!

a
. (27)

B. Modeling the Wave Front

1. Nonrandom Parameter Estimation
The wave front has been frequently modeled as a nonran-
dom parameter to be estimated. When f is determinis-
tic, the bias and the error variance reduce to

b 5 ~MH 2 I!f, (28)

Le 5 MLnMT. (29)

The error of the estimate is dependent on the model cho-
sen to describe the wave-front sensor behavior, but the er-
ror variance is independent of that model and depends
only on the reconstructor and the noise.

In this case, the noise propagator metric results from
the error analysis. The noise propagator, called msenp ,
is defined as the mean squared error divided by the aver-
age variance of the noisy slope measurements. The noise
propagator is of dual use in analyzing the performance of
a reconstruction method. For a single configuration of
sensors and actuators, it determines how the reconstruc-
tion responds to noise. For a group of various configura-
tions of increasing size, the set of their msenp’s can de-
scribe how the system’s size affects its response to noise.
In the case of white noise of variance sn

2, the covariance
matrix Ln is diagonal with value sn

2, which reduces the
noise propagator expression to

msenp 5
mse

sn
2 5

Trace~MMT!

a
(30)

This result agrees with standard derivations.8

2. Random-Vector Estimation
If the wave front is assumed to be a random vector, with
known mean mf and covariance matrix Lf , the bias and
the error variance are given by

b 5 ~MH 2 I!mf , (31)

Le 5 ~MH 2 I!Lf~HTMT 2 I! 1 MLnMT. (32)

Assuming that the wave-front phase is zero mean in time,
the estimate is unbiased, regardless of the structure of M.
This means that, in time, the expected error is zero,
though any instance has nonzero error. The mean
squared error can be calculated by using Eqs. (27) and
(32):

mse 5
Trace~Le!

a
. (33)

This result depends on both the reconstructor and the
method of gradient generation. This performance metric
allows comparative evaluation of different reconstruction
methods (by varying M) and of different sensor models (by
varying H). This equation shows the importance of con-
sidering the impact of noise in the system. It is possible
to design an M such that MH 2 I 5 0. However, this
also affects the portion of the error due to the noise. The
total error may not be minimal in this case.

3. Wave Front as a Random Vector
To use the performance metrics derived in Subsection
8.B.2, the statistics of the wave front must be known.
These statistics will be different for closed-loop and open-
loop performance. Obtaining them is a nontrivial prob-
lem. These statistics could potentially be derived from
theoretical knowledge of the phenomenon that produces
the phase aberrations. This could be atmospheric turbu-
lence, or the heating of optics due to high-power lasers.
If the theoretical approach is not possible, the statistics
could be estimated from observations of the process or by
simulation. Wallner7 has presented a method for assess-
ing Kolmogorov turbulence across an aperture with pis-
ton removed. Work by the authors in applying this
method is still in progress.
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C. Linear Model of Mean Squared Error
The above results can be combined to create a linear
model of reconstruction performance. Expanding Eq.
(33) produces

mse

5
Trace@~MH 2 I!Lf~HTMT 2 I!# 1 Trace~MLnMT!

a
.

(34)

The left-hand term of the numerator is the contribution to
the mean squared error by the wave-front phase. For a
given wave-front phase distribution, this remains fixed.
This part of the error will be called msef , the latent error.
The right-hand term is the contribution of the noise.
This is exactly what the mean squared error is in the
nonrandom-parameter case. This depends entirely on
the variance of the noise. This part of the error will be
called msen(Ln). Note that the assumption in Subsec-
tion 8.B of a reconstruction matrix independent of noise
allows this simplification. The total error is given by

mse 5 msef 1 msen~Ln!. (35)

Assuming white noise of variance sn
2, this can be reduced

further. When we recall Eq. (30) defining the noise
propagator, the above expression becomes

mse 5 msef 1 sn
2 msenp . (36)

This equation describes a line. It says that the ex-
pected performance of a reconstructor with white noise on
the measured gradients is simply a fixed component (the
latent error) and a noise component that grows linearly
with the noise variance. This allows easy graphical com-
parison of the performance of various reconstructors un-
der the same wave-front and noise conditions.

9. PERFORMANCE RESULTS WITH HUDGIN
AND FRIED GEOMETRIES
If we use the metrics defined in Section 8, the perfor-
mance of the Hudgin-FT and Fried-FT methods can be
analyzed. The most significant result of this analysis is
that for a given aperture size, a trade-off exists between
speed and error in FT methods. This is due to the spe-
cific power-of-2 grid sizes required by the FFT. This sec-
tion also presents the noise propagator results for large
systems and confirms the linear model of mean squared
error.

Note that this performance analysis is done given the
discrete model and the specific geometry of each method.
In particular, the gradients generated for the simulations
are created directly from the Hudgin- and Fried-geometry
equations [see Eqs. (1), (2), (11), and (12)].

A. Noise Propagation
The theoretical noise propagator msenp is evaluated for a
variety of different aperture sizes for both the Hudgin-FT
and Fried-FT methods. The calculation comes directly
from Eq. (30). This is tractable for grid widths up to 32
actuators across, allowing a circular aperture of 716 total
actuators. Of most concern, however, are systems with
thousands to tens of thousands of actuators. To predict
performance in this regime, one has to rely on simulation.
Simulations to estimate the sample mean of the noise
propagator prove to be reasonably accurate compared
with what theory predicts (see Fig. 9). Simulation is
therefore used to predict msenp for larger apertures.

In the DFT case, the FT methods have reasonable noise
propagation, especially when compared with the results
for other methods. These comparisons are shown in Fig.
10. It has been shown that minimum-least-squares
VMM reconstructors have a c 1 d ln a dependence for the
noise propagators,9 where c and d are constants and a is
the number of actuators. Based on work by Herrmann,10

a Hudgin-geometry VMM reconstructor on an N 3 N
square aperture (a 5 N2) has a noise propagator

msenp 5 0.46 1 0.087 ln a. (37)

The square-aperture FT case has a noise propagator1

msenp 5 0.09753 1
1

p
ln N. (38)

when a curve is fitted to the data, the Hudgin-FT method
over the range 500–50,000 actuators inside the aperture
has a noise propagator

msenp 5 0.17 1 0.13 ln a (39)

with correlation coefficient of the fit of 0.97. As shown in
Fig. 10(a), the Hudgin-FT method has a lower noise
propagator than that in the square-aperture FT case but
higher than that of a VMM reconstructor.

For the Fried geometry, a VMM reconstructor on an
N 3 N (a 5 N2) square aperture has a noise propagator5

msenp 5 0.6558 1 0.1603 ln a. (40)

The square-aperture FT case has a noise propagator2

Fig. 9. Theoretical and simulation results of the noise propaga-
tion for the Hudgin-FT and Fried-FT methods. Aperture sizes
vary on a 32 3 32 grid for the FFT. The solid curves are the
noise propagators as determined theoretically. The data points
are simulated noise propagator predictions. The simulation
converges to the correct solution adequately enough to use it for
large numbers of actuators, the theoretical calculations of which
are computationally intractable.
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msenp 5 c 1
3

p
ln~N 2 1 !, (41)

where c was unspecified and is assumed to be zero here.
The Fried-FT method deviates from the linear model.
Over the range 500–50,000 actuators inside the aperture,
it is best fitted by a second-order polynomial in ln a:

msenp 5 0.1456 ln2 a 2 1.7922 ln a 1 7.6175 (42)

with correlation coefficient of the fit of 0.997. As shown
in Fig. 10(b), the Fried-FT method has a lower noise
propagator than that for the square-aperture FT case for

Fig. 10. Simulation results for noise propagation in comparison
with the VMM and Freischlad’s square-aperture FT methods.
In this DFT case, the reconstructions were done on the smallest
size grid possible to correctly hold the aperture. (a) Hudgin ge-
ometry: The Hudgin-FT case lies between the square-aperture
cases. (b) Fried geometry: The Fried-FT case is closer to the
VMM case for smaller apertures but reaches square-aperture
levels by 35,000 actuators.
systems with 35,000 or fewer actuators. The noise
propagation is worse than that of the VMM method for all
cases but has a reasonably close value for fewer than 3000
actuators.

The performance of the Fried-FT method is worse than
the Hudgin-FT method’s for two main reasons. First, the
transformation to the two grids increases the noise vari-
ance (as was recognized by Freischlad2). Second, as the
aperture size increases, it becomes harder to remove all
the wafflelike components.

The preceding results are for the DFT case. But as
Fig. 11 shows, performance varies significantly between
the DFT and FFT cases. There can be significant perfor-
mance loss when the FFT is used. This is because the
FFT grids are of fixed power-of-2 sizes. If an aperture is
34 points across, it will not fit into a 32 3 32 grid but
must be reconstructed on a 64 3 64 grid. If the DFT is
used, it could be reconstructed on a 36 3 36 grid instead.
As the surrounding grid gets bigger, the noise propaga-
tion increases. This observed behavior is confirmed by
analysis of the small-aperture case. For an illustration
of this for the Hudgin-FT and Fried-FT methods on a 112-
actuator aperture, see Fig. 12. The increase in noise
propagation can be explained as part of the same behav-
ior that causes noise propagation to increase with aper-
ture size. Though the number of noisy gradient mea-
surements is fixed, the gradients are duplicated more and
more as the grid size is increased. A DFT is a linear com-
bination of these points, which means that as more are
added, the weighting to the noise is increased.

This speed versus error performance trade-off has im-
portant design implications. Ideally, the aperture size
will be just right so as to fit into a power-of-2 grid. If this
is not the case, and the system is of a size that cannot be
changed, a choice must be made. For example, a system
with 38,000 actuators could be calculated on a 220

Fig. 11. Comparison of simulation results for noise propagation
in the DFT and FFT cases. The DFT case is reconstructed on
the smallest grid possible, while the FFT case uses power-of-2-
sized grids. For both the Hudgin-FT and Fried-FT cases, there
is a clear performance loss when the aperture diameter is small
compared with the power-of-2-sized grid. Only the largest size
apertures in a given power-of-2 grid approach ideal DFT results.
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3 220 grid by using the DFT. This would have a noise
propagation of approximately 1.5 in the Hudgin-FT case
and 5.0 in the Fried-FT case. But this DFT is slower
than a 256 3 256 FFT, which could also be used. For ex-
ample, in IDL this DFT takes twice as long to compute as
the FFT. Though the FFT is faster, the resulting noise
propagation would be increased to approximately 2.0 in
the Hudgin-FT case and 5.9 in the Fried-FT case (see Fig.
11).

Fig. 12. Theoretical results for the increase in noise propaga-
tion of a fixed 112-actuator system as the surrounding grid is in-
creased in size. For both methods, increasing the grid size in-
creases the total noise propagation in a regular manner.

Fig. 13. Total mean squared error versus noise variance for two
systems, a 448-actuator aperture on a 32 3 32 grid and an
11,304-actuator aperture on a 128 3 128 grid. Results for both
the Hudgin-FT and Fried-FT methods are shown. The lines are
the predicted performance, based on either theoretical or experi-
mental noise propagation and an experimentally determined la-
tent error. The data points are the results of simulation at vari-
ous levels of noise. The effect of the noise propagator is clearly
demonstrated in the differing slopes.
For the DFT implementation, or for suitably sized ap-
ertures with use of the FFT, the FT methods have favor-
able noise propagation. The noise propagation for the
Hudgin-FT method fits the linear dependence on the loga-
rithm of system size. The Fried-FT method has noise
propagation that grows more quickly than the logarithm,
but it starts at a reasonably low level.

B. Total Mean Squared Error
The second part of the total error is the latent error. As
discussed above, using the extension and boundary meth-
ods with the FT filtering produces perfect reconstruction
of all sensed wave-front phase modes in the absence of
noise. For the Hudgin-FT method, this means that the
latent error is essentially zero. For the Fried-FT method,
the missed waffle mode is extremely small, compared
with the large errors that occur without proper process-
ing, as shown in Fig. 2.

Simulations confirm the linear model of mean squared
error presented in Eq. (36). Simulation and estimation
were used to determine both Lf (which leads to msef) and
the sample mean of msef . Figure 13 shows the results
of Monte Carlo simulations with random realizations of
the same wave-front phase profile and varying amounts of
white noise on the measurements. The simulator used
for the atmospheric phase screen generation correctly
simulates the low-frequency components.11 For both
small and large apertures, this linear model of perfor-
mance was confirmed, with simulation results agreeing
closely with predicted values.

10. CONCLUSIONS
The problem of reconstructing wave-front phase on circu-
lar apertures with a square grid has been identified and
solved. Though large errors result from zero padding,
the methods presented in this paper permit accurate re-
construction of all sensed modes when no noise is present.
These FT methods have been shown to work on the Fried
geometry in addition to the Hudgin geometry. The extra
processing steps were shown to not increase the order of
growth of the FT method execution time. Detailed per-
formance analysis produced a linear model for the mean
squared error of reconstruction. The noise propagation
of FT methods is reasonable for apertures that nearly fill
the square grid, though there exists a trade-off between
speed of performance and reconstruction error when the
FFT is used. The above results have been presented for
large systems, up to 50,000 actuators. Based on the re-
sults in this paper, a reconstruction method for a 10,000-
actuator system could be realistically implemented by us-
ing current technology and with adequate performance.

These results are for discrete models that are based on
the Hudgin and Fried geometries. How these methods
perform in a more continuous domain with SH wave-front
sensors and a DM is being studied by the authors. The
interaction of reconstruction noise with the DM, further
filtering approaches, and the latent error of each method
when applied to data from realistic SH sensor models,
will be addressed in an upcoming paper.
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