Study of an adaptive optics system for the astronomy in the visible

Sandrine Thomas,

A. Tokovinin, N. van der Bliek, B. Gregory, R. Tighe, R. Cantarutti, P. Schurter, E. Mondaca, D. Sprayberry

Santa Cruz,

2nd of March 2006

Outline

- Limitations of classical AOs
 GLAO technics (Ground Layer Adaptive Optics)
 Description and performance
 Example of SAM (SOAR Adaptive Module)
 - TurSim, BIM60, Laser, WFS
- Shack-Hartmann WFS study

Main limitations of AO

Low sky coverage
Small isoplanetic angle (a few arcsec)
Difficult correction in the visible

Solutions

Sky coverage solution = laser guide star
 But: cone effect and
 Tip/tilt problem

 Anisoplanetism solution: 3D turbulence reconstruction (tomography + MCAO)
 BUT: complex system

Correction in the visible : increase of the number of actuators
 BUT: complex and flux problem

GLAO

GLAO = measure and correction of the ground layer

- Tomography = measure in 3D of the turbulence
- Only one star: use of the cone effet (+ measure of the tip/tilt)

$$\left\langle \alpha_{global}^{2} \right\rangle = \int \left\langle \alpha(h)^{2} \right\rangle (1 - h/H)^{2} dh$$

Uniform correction over a larger FoV
Gain in resolution in the visible

Why is it working? Turbulence profiles

SAM and my contributions

Tokovinin A. et al, SPIE, 2004

TurSim

Physical simulation of the atmospherical turbulence

Different atmospherical conditions possible
Different speeds
Different sources: *Diode laser, LED UV, LED white*

 $r_0 \approx 300 \ \mu m$ at 633 nm Adjustable beam diameter

 $d/r_0 < 45_{10}$

Choice of the DM

Tests of the electrostatic mirror OKO79 from OKOTECH then of the bimorph miroir BIM60 from CILAS: Stroke and inter-actuators stroke

12

- **Berrations**
- Influence functions

Tokovinin A., Thomas S., Vdovin G., SPIE, 2004

SAM's DM

Pupil = 60 mm but 50 mm used
60 actuarors
Radius of curvature = ±16.2 m
Astigmatism = 3 μm

SAM's prototype

Closed-loop

Image quality after correction of the mirror aberrations

20 nm rms

Turbulence characteristics

Closed-loop study

Laser

Laser:

- Nd:YAG 355nm triple, 8W at 10 kHz
- LLT: D = 30cm, behind secondary, H=10km
- Gating: KD*P Pockels cell, dH=150m
- Tip/tilt Measurement: 2 NGS (R<18)</p>
 - Quad cell
 - APDs connected to fiber optics

Why UV? High Rayleigh diffusion (λ⁻⁴) Easy separation between science and WFS No visual hazard

The SHWFS

(in collaboration mainly with T. Fusco, A. Tokovinin)

Good precision of the position measurement

 $\mathbf{1}$

Good reconstruction of the distorted wavefront

$$\sigma^2_{err} = \langle (C_{mes} - C_{true})^2 \rangle$$

1000 iter

Context

Parameters of the study

Spot shape
Turbulence strength r₀
Photon number per subaperture: N_{ph}
Readout noise: N_r
Subaperture FoV
Spatial resolution: Nyquist, Nyquist/2

Monte-Carlo simulation

Centroid calculation methods

 $C_{x} = \alpha \frac{\overline{I_{i,j}}}{\sum_{i,j} I_{i,j}}$

C = Il - Ir

CoG:

- Thresholding, T
- Windowing, W
- Weighted CoG, F_w

Quad Cell

Correlation

$$F_{corr}(x, y) = I \otimes F_{w} = \sum_{i,j} I_{i,j} F_{w}(x_{i} + x, y_{i} + y)$$

 $\sum x_i I_{i,j} F_{w,i,j}$

Correlation peak estimation: <u>CoG + thresholding, T</u>

n: <u>CoG + thresholding,</u> Parabola fitting Gaussian fitting

Non-linearity

Ctrue

CL

C_{mes}

Error variance expression

Term from atmospherical distortions

W optimization

Methods comparison

		Pros	Cons
Thresholding –Windowing		Reduction of noisy pixels	Not robust at low flux
Quad Cell		Robustness and good noise propagation at low flux and high N _r	 Response coefficient to adjust and difficult to estimate Non-linear, not precise at high flux
Weigthed windowing		Robustness and good noise propagation	Response coefficient to adjust
Correlation		Independent from the size and shape of the spot	Peak determinationBig calculation
	By adapting the parameters for each method, it is possible to find the minimum error with the minimum of changes		

Example 1: Planet Finder

25

Shack-Hartmann

- 10x10 sub-apertures
- 8x8 pixels per subapertures
- UV-Visible (100-1100 nm)

CCD-39 EEV + controler SDSU-III

- Readout noise = $5.9e^{-1}$ at 200 Hz
- Binning capacity (1x1, 2x2, 4x4)

Example 2: SAM

27

Conclusions 1

Adaptive optics wide FoV in the visible
Study of the main components of SAM

- TurSim: Development et validation
- MD: Validation and test of 2 types of mirror
- Contribution to the optical design
- Development and use of a prototype

Theoretical study and simulation of a SH WFS:

- Definition of an error budget
- Comparison of different methods of spot position
- Development of analytical expressions
- Application to different type of systems

Search for tertiary companions to close spectroscopic binaries

In collaboration with A. Tokovinin, M. Sterzik, S. Udry

Tokovinin A., Thomas S., Sterzik M., Udry S., A&A, 2006

Close binaries formation

Idea: orbital shrinkage

Magnetic breaking or disk breaking...
 Evolution like Kozai cycle (Kozai 1962)
 Hypothesis: deposition of the angular momentum in a tertiary component

Existence = Melo et al. 2001, Simulations: Sterzik et al. 2003

Eggleton 2001, Kiseleva-Eggleton, 2004

<u>Question</u>:

Are tertiaries needed in the SBs formation?

Are all SBs part of a multiple system?

Tertiary detection

<u>Sample</u>

- Close < 100pc (Hipparcos) larger separations
- Periods [1j 30j]
- CORALIE, Batten et al. (1989), recent paper
- Dwarfs from 0.4 to 1.7 M.
 - (more numerous, close, not too bright and sharp lines.)

NACO: AO on Yepun (VLT4)

- NACO: Imagery, polarimetry, spectroscopy, coronography
- $\lambda = 1-5 \ \mu m$.
- R ~ 50% in K band with a reference star of V=12
- 2 runs: Novembre 2004 and July 2005
- Band K + bands J H for some of Nov.
- 72 objects observed +
 - 2 calibrators

$$\Rightarrow 1$$
 pixel = 13.30 mas

Example of companions

Data reduction

- Regular data reduction, package Eclipse
 DAOPHOT procedure: fitting of the image with
 - the primary.
- PSF extraction

• Position error = 0.5 mas if $\Delta m < 3^m$ and 5 mas if $\Delta m = 5^m$ • rms magnitude difference error = 0.02^m if $\Delta m < 3^m$ and 0.05^m if $\Delta m = 5^m$

Detection limit

 3σ detection from I (r,θ)
 Check with simulation
 Model

False detections

$$\rho = 0.1$$
", $\Delta m = 3$

Search for wider companions

2MASS

Extract data, ρ<2'
 Plot CMD (*J*, *J*-*K*)
 Select candidates < 0.2^m
 from the main sequence

POSS:
Palomar Observatory Sky Survey

Period distribution

Correction for incomplete detection

Correction done by maximum likelyhood

Fraction of tertiary vs SB's period

Conclusions 2

Tertiary fraction depends on the period P₁ of the SBs

- For $P_1 < 3^d$, almost all SBs \in multiple systems
- If P₁ is bigger, ∃ pure SBs. Tertiary frequency < one of solar type systems
- Different period distribution between triple and binaries
- Same mass distribution
- No relation between P₁ and P₃

Most massive component = closest one

➡ ∃ pure SBs ⇒ no Kozai cycle
 Hyp: accretion, disk braking.
 SBs could have lost their tertiaries.

Perspectives

Implementation of GLAO systems
 1st generation of AO for the ELTs
 Follow-up of the WFS study in the case of a laser guide star

 Problem of SBs is only partially resolved
 Other science: Brown dwarf formation, Herbig AeBe star formation.

MERCI A TOUS