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AO improves resolution by correcting for the
atmospheric aberration

AO improves SNR over background (IR In
particular)
AO enables science from the ground:
Planet imaging
Details of Galactic center
Galaxy mergers — growth of the universe

AO can take advantage of large telescope
diameter

HIP 69386

Separation=0.38"

Closed loop Strehl=0.74, 2.3um, ry=18cm at 66004
BYma expasures, 4.8" ficld of view
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AO Speed Improvement
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Exposure time to a given SNR as a function of telescope
diameter and science band, with and without AO. “Signal”
is counted in the diffraction-limited core (AO case) or
seeing disk (no AO case). Noise is a combination of
background, thermal emission, dark current and read
noise, with backgrounds and emission counted only in the
pixel region of the signal photons. Assumptions are r, =
actuator spacing = 10 cm, warm fore-optics, throughput =
50%.

When there is sky background, point-
source SNR improves as sources poke
above the noise
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Speed-Resolution Product

Speed x resolution gain

relative to 1-meter
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Keck AO Use

Keck 1 NGS
4%

MOSFIRE
22%

NIRES
6%

ESI
3%




Gemini AO Use | o i

Fraction of Requested Time
Fraction of Requested Time by Instrument: Gemini North

by Instrument: Gemini South 04%31

NIFS-Altair NIFS NIRI-Altair
8% 204 5%

Figure 6 — Semester 2015B demand by instrument.
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Gemini Planet Imager

lmages of nearby Planetarg 595’tem5
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Bottom line

AO has highest payoff in the near infrared
OH lines, and thermal emission starting at 2u
Visible?

MidIR?
Wide field AO
All-sky — Laser Guide Stars
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Why Laser Guide Stars? r:;*f,,
AO Science on the Whole Sky

Y Star

LGS coverage

Sky coverage fractions

Galactic
latitude
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reference star magnitude (m)

diameter of field (arc seconds)

NGS coverage
0.1 %

1-6July 2012
Amsterdam RAI Convention Ctr.
Amsterdam Netherlands




Why Laser Guide Stars?
AO Science on the Whole Sky
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Mauna I'(."'éﬁé‘ eav?‘épg 2 4K — Sean Goebel :
https://www.youtube.com/watch?v=H1JOU2iDKeM



https://www.youtube.com/watch?v=H1JOU2iDKeM

What makes an ideal laser guide star?

As close to infinity as possible
As close to a point source as possible
As bright as possible

------- Particulars for a Sodium layer beacon: -------

Sodium layer at 90km — the highest beacon possible using
natural terrestrial phenomena — much higher than Rayleigh
(atmosphere) scatter at ~¥30km

Sodium has high cross-section
Sodium can be optically pumped

System issues favor pulsing
Blanking Rayleigh background return
Pulse tracking to counter elongation — reduces spot size

Q
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Spectral Formats are driven by AO system considerations
and laser technology

Absorption cross section (107 em®)
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Pulse formats are also driven by AO system considerations
and laser technology

Rayleigh-blank

® Receiver is blanked while pulse is <30 km from telescope
Important when projecting out the receiver aperture
% Pulse width can be 0 < t, < 60us due to spare time in the cycle
t, < 3us pulse for pulse tracking, but duty cycle is < 1%
Slight variation to this solution for t, = 30us, 10% duty cycle (2.9kHz rep)
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UC Observatories

ShaneAO Guide Star Laser i

ShaneAO

. 7-9 spectral lines, 10-20% duty cycle
- Variable pulse repetition frequency, goal is Rayleigh blank format

938 nm Phase and
master amplitude
oscillator modulator

Pump diodes | ™
- -1
Pump diodes Relative frequency (GHz)

1583 nm Phase and | | EDFA
master amplitu -
oscillator modulator | | amplifier Current dye laser New fiber laser

Lab tested format “Goal” format
Output power CAYY 10W 10W
Polarization Linear Circular Circular
Spectral format ~2 GHz FWHM 9 lines with 200 Fewer lines and/or
bandwidth MHz spacing smaller spacing
Pulse duration 150 ns 200 ns 30 us
Duty cycle 0.16 % 10 % 20%
Fraction of light None None 10%
tuned to D2b

Absorption cross section (10 cm?)

. Also: goal is to transport to launch telescope via fiber

19



Modeling of laser pulse format interaction
with sodium atom

Rampy, 2012

Average during 1** 10 microsec is ~30% more than after 500 microsec

5000 10000 15000 20000 25000

Pulse format of fiber laser (400 ns, 500 kHz, 20% duty
cycle) shows inter-pulse optical pumping

Measured vs. Predicted Return for Shane LGS
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¥ Predicted - New
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Return Flux [ph/s/sr/atom/(W/mA2)]

100000 200000 300000 400000 500000

Time (ns)
Some advantage to pulses <100 us

Retum (ph/cm*2/s/W)

Month (Jan. = 1)

Predicted return of new laser: 5 — 10 x th&>
the current dye laser at Lick 20



UC Observatories
Laboratory for
Adaptive Optics

Guide Star Laser

. Gets to the sodium 589nm line by mixing two IR lines

Got to 10W!
938 nm Phase and | | NDFA November 5, 2009
master amplitude pre- ‘
oscillator modulator amplifier

Pump diodes| ™
Pump diodes

1583 nm Phase and EDFA
master amplitude pre-
oscillator modulator amplifier

-

System is currently running 500 kHz, 12% duty cycle and is
operating at its design power.

y = 0.0852x
R? = 0.98674

589 nm Power (W)

Product of IR Powers (W?)




Tip/nlt/
focus sensor
focal plane

Dichroic or
Mirror
MEMsDM____
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WFS field steering @ 3\
NT’Q"; WFS dichroic, LGS
-} or NGS
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l\ “t RCAL focal plane
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WFS optics
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Old System

High Strehl in K band
J and H accessible

Diffraction-limited imaging in K
19 arcsec FOV 76 mas/pix

Limited to short exposures

Fixed on-sky orientation

UC Observatories
Laboratory for
Adaptive Optics

ShaneAO

ShaneAO

High Strehl in J, H, and K bands
| band accessible

Diffraction-limited in J, H, and K
20 arcsec FOV 33 mas/pix
more sensitive science detector

4-hour exposures
enables dim object spectra

Instrument can rotate

to set the spectrograph slit an
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Uranus, Rings, Moons

Click on the image - it’s a movie

Note the motion: rotating planet and orbiting moons
Jirings are resolved |




Star cluster M92 :
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25  Diffraction-limit (note the Airy rings) everywhere in this 28 arcsec field @
Hundreds of stars .



Also, Isoplanatic angle
may be much larger than expected

PSF correlation to center star
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./ Mt Hamilton Seeing

Mt Hamilton seeing is anecdotally 1.25 to 1.5 arcseconds FWHM of star in mid
visible (V-band)

Years of data collection (from telescope guider cameras) seem to support this

Aug 9-10, 2014

--Apr2014
—Aug2014
- 0ct2014
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Figure 1 Seeing data from the APF guider. Left, time series from one night’s observing

with data taken every few seconds. Histogram of seeing for several months. Right average
seeing on a monthly basis over the past year.
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There is evidence that free seeing of the Mt. Hamilton site is much
better than 1.25 arcsec, more like 0.7 arcsec

We will be collecting seeing data every AO night

Submitted a proposal to construct a seeing monitor — this will
complement observing programs (e.g. PSF estimator)

Future AO development at Lick may be impacted by results

K\
Future Mt Ham site use may be impacted by results ((Q



Conclusions

Laser guide stars will bring AO-fed instrumentation into high-
use at large telescopes

2"d generation technology enables unprecedented science
discoveries

Even slow AO (“ao” — “active” optics), can improve science
productivity of all instruments - ASM

Q
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